Spaces:
Sleeping
Sleeping
init modified demo
Browse files- README.md +40 -7
- app.py +242 -0
- constants.py +4 -0
- settings.py +16 -0
- static/loading-icon.svg +4 -0
- static/styles.css +78 -0
- utils.py +45 -0
README.md
CHANGED
@@ -1,13 +1,46 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: BeeCoder Demo
|
3 |
+
emoji: π
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.28.3
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
# πBeeCoder Demoπ
|
14 |
+
|
15 |
+
## Code-Completion Playground π» with π[BeeCoder](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA-python) Models
|
16 |
+
|
17 |
+
This is a demo playground for generating Python code with the power of π[BeeCoder](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA-python), a **fine-tuned** version of the tiny [101M base model](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA) on a dataset of pypi packages.
|
18 |
+
|
19 |
+
βΉοΈ This is not an instruction model but just a code completion tool.
|
20 |
+
|
21 |
+
---
|
22 |
+
|
23 |
+
**Intended Use**: This app and its [supporting model](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA-python) are provided for demonstration purposes only; not to serve as a replacement for human expertise. For more details on the model, please refer to the [model card](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA-python).
|
24 |
+
|
25 |
+
In our country, we say _"To let 100M parameters model generate python script and not validate is like to let monkey fly a plane"_. So please be careful with the generated code.
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## Base Model Information
|
30 |
+
|
31 |
+
The base model, smol_llama-101M-GQA, was pretrained on a relatively few (< ~20B) high-quality tokens. It is tiny in size (101M parameters) but relatively powerful in performance. The training for the base model included datasets such as:
|
32 |
+
|
33 |
+
- [JeanKaddour/minipile](https://huggingface.co/datasets/JeanKaddour/minipile)
|
34 |
+
- [pszemraj/simple_wikipedia_LM](https://huggingface.co/datasets/pszemraj/simple_wikipedia_LM)
|
35 |
+
- [BEE-spoke-data/wikipedia-20230901.en-deduped](https://huggingface.co/datasets/BEE-spoke-data/wikipedia-20230901.en-deduped)
|
36 |
+
- [mattymchen/refinedweb-3m](https://huggingface.co/datasets/mattymchen/refinedweb-3m)
|
37 |
+
|
38 |
+
You can find more information about the base model [here](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA).
|
39 |
+
|
40 |
+
---
|
41 |
+
|
42 |
+
### Credits
|
43 |
+
|
44 |
+
This app is modified from a demo playground originally built for [StarCoder](https://huggingface.co/bigcode/starcoder) by [BigCode](https://huggingface.co/bigcode). You can find the original demo [here](https://huggingface.co/spaces/bigcode/bigcode-playground).
|
45 |
+
|
46 |
+
---
|
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from gradio.themes.utils import sizes
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
import utils
|
7 |
+
from constants import END_OF_TEXT
|
8 |
+
from settings import DEFAULT_PORT
|
9 |
+
|
10 |
+
# Load the tokenizer and model
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
12 |
+
"BEE-spoke-data/smol_llama-101M-GQA-python",
|
13 |
+
use_fast=False,
|
14 |
+
)
|
15 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
16 |
+
tokenizer.pad_token = END_OF_TEXT
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
"BEE-spoke-data/smol_llama-101M-GQA-python",
|
19 |
+
device_map="auto",
|
20 |
+
)
|
21 |
+
model = torch.compile(model, mode="reduce-overhead")
|
22 |
+
|
23 |
+
# UI things
|
24 |
+
|
25 |
+
_styles = utils.get_file_as_string("styles.css")
|
26 |
+
|
27 |
+
# Loads ./README.md file & splits it into sections
|
28 |
+
readme_file_content = utils.get_file_as_string("README.md", path="./")
|
29 |
+
(
|
30 |
+
manifest,
|
31 |
+
description,
|
32 |
+
disclaimer,
|
33 |
+
base_model_info,
|
34 |
+
formats,
|
35 |
+
) = utils.get_sections(readme_file_content, "---", up_to=5)
|
36 |
+
|
37 |
+
theme = gr.themes.Soft(
|
38 |
+
primary_hue="yellow",
|
39 |
+
secondary_hue="orange",
|
40 |
+
neutral_hue="slate",
|
41 |
+
radius_size=sizes.radius_sm,
|
42 |
+
font=[
|
43 |
+
gr.themes.GoogleFont("IBM Plex Sans", [400, 600]),
|
44 |
+
"ui-sans-serif",
|
45 |
+
"system-ui",
|
46 |
+
"sans-serif",
|
47 |
+
],
|
48 |
+
text_size=sizes.text_lg,
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def run_inference(prompt, temperature, max_new_tokens, top_p, repetition_penalty):
|
53 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
54 |
+
outputs = model.generate(
|
55 |
+
**inputs,
|
56 |
+
max_new_tokens=max_new_tokens,
|
57 |
+
min_new_tokens=8,
|
58 |
+
renormalize_logits=True,
|
59 |
+
no_repeat_ngram_size=6,
|
60 |
+
repetition_penalty=repetition_penalty,
|
61 |
+
num_beams=3,
|
62 |
+
early_stopping=True,
|
63 |
+
do_sample=True,
|
64 |
+
temperature=temperature,
|
65 |
+
top_p=top_p,
|
66 |
+
)
|
67 |
+
text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
68 |
+
return text
|
69 |
+
|
70 |
+
|
71 |
+
# Gradio interface wrapper for inference
|
72 |
+
def gradio_interface(
|
73 |
+
prompt: str,
|
74 |
+
temperature: float,
|
75 |
+
max_new_tokens: int,
|
76 |
+
top_p: float,
|
77 |
+
repetition_penalty: float,
|
78 |
+
):
|
79 |
+
return run_inference(prompt, temperature, max_new_tokens, top_p, repetition_penalty)
|
80 |
+
|
81 |
+
|
82 |
+
import random
|
83 |
+
|
84 |
+
examples = [
|
85 |
+
["def add_numbers(a, b):\n return", 0.2, 192, 0.9, 1.2],
|
86 |
+
[
|
87 |
+
"class Car:\n def __init__(self, make, model):\n self.make = make\n self.model = model\n\n def display_car(self):",
|
88 |
+
0.2,
|
89 |
+
192,
|
90 |
+
0.9,
|
91 |
+
1.2,
|
92 |
+
],
|
93 |
+
[
|
94 |
+
"import pandas as pd\ndata = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}\ndf = pd.DataFrame(data).convert_dtypes()\n# eda",
|
95 |
+
0.2,
|
96 |
+
192,
|
97 |
+
0.9,
|
98 |
+
1.2,
|
99 |
+
],
|
100 |
+
[
|
101 |
+
"def factorial(n):\n if n == 0:\n return 1\n else:",
|
102 |
+
0.2,
|
103 |
+
192,
|
104 |
+
0.9,
|
105 |
+
1.2,
|
106 |
+
],
|
107 |
+
[
|
108 |
+
'def fibonacci(n):\n if n <= 0:\n raise ValueError("Incorrect input")\n elif n == 1:\n return 0\n elif n == 2:\n return 1\n else:',
|
109 |
+
0.2,
|
110 |
+
192,
|
111 |
+
0.9,
|
112 |
+
1.2,
|
113 |
+
],
|
114 |
+
[
|
115 |
+
"import matplotlib.pyplot as plt\nimport numpy as np\nx = np.linspace(0, 10, 100)\n# simple plot",
|
116 |
+
0.2,
|
117 |
+
192,
|
118 |
+
0.9,
|
119 |
+
1.2,
|
120 |
+
],
|
121 |
+
["def reverse_string(s:str) -> str:\n return", 0.2, 192, 0.9, 1.2],
|
122 |
+
["def is_palindrome(word:str) -> bool:\n return", 0.2, 192, 0.9, 1.2],
|
123 |
+
[
|
124 |
+
"def bubble_sort(lst: list):\n n = len(lst)\n for i in range(n):\n for j in range(0, n-i-1):",
|
125 |
+
0.2,
|
126 |
+
192,
|
127 |
+
0.9,
|
128 |
+
1.2,
|
129 |
+
],
|
130 |
+
[
|
131 |
+
"def binary_search(arr, low, high, x):\n if high >= low:\n mid = (high + low) // 2\n if arr[mid] == x:\n return mid\n elif arr[mid] > x:",
|
132 |
+
0.2,
|
133 |
+
192,
|
134 |
+
0.9,
|
135 |
+
1.2,
|
136 |
+
],
|
137 |
+
]
|
138 |
+
|
139 |
+
# Define the Gradio Blocks interface
|
140 |
+
with gr.Blocks(theme=theme, analytics_enabled=False, css=_styles) as demo:
|
141 |
+
with gr.Column():
|
142 |
+
gr.Markdown(description)
|
143 |
+
with gr.Row():
|
144 |
+
with gr.Column():
|
145 |
+
instruction = gr.Textbox(
|
146 |
+
value=random.choice([e[0] for e in examples]),
|
147 |
+
placeholder="Enter your code here",
|
148 |
+
label="Code",
|
149 |
+
elem_id="q-input",
|
150 |
+
)
|
151 |
+
submit = gr.Button("Generate", variant="primary")
|
152 |
+
output = gr.Code(elem_id="q-output", language="python", lines=10)
|
153 |
+
with gr.Row():
|
154 |
+
with gr.Column():
|
155 |
+
with gr.Accordion("Advanced settings", open=False):
|
156 |
+
with gr.Row():
|
157 |
+
column_1, column_2 = gr.Column(), gr.Column()
|
158 |
+
with column_1:
|
159 |
+
temperature = gr.Slider(
|
160 |
+
label="Temperature",
|
161 |
+
value=0.2,
|
162 |
+
minimum=0.0,
|
163 |
+
maximum=1.0,
|
164 |
+
step=0.05,
|
165 |
+
interactive=True,
|
166 |
+
info="Higher values produce more diverse outputs",
|
167 |
+
)
|
168 |
+
max_new_tokens = gr.Slider(
|
169 |
+
label="Max new tokens",
|
170 |
+
value=128,
|
171 |
+
minimum=0,
|
172 |
+
maximum=512,
|
173 |
+
step=64,
|
174 |
+
interactive=True,
|
175 |
+
info="Number of tokens to generate",
|
176 |
+
)
|
177 |
+
with column_2:
|
178 |
+
top_p = gr.Slider(
|
179 |
+
label="Top-p (nucleus sampling)",
|
180 |
+
value=0.90,
|
181 |
+
minimum=0.0,
|
182 |
+
maximum=1,
|
183 |
+
step=0.05,
|
184 |
+
interactive=True,
|
185 |
+
info="Higher values sample more low-probability tokens",
|
186 |
+
)
|
187 |
+
repetition_penalty = gr.Slider(
|
188 |
+
label="Repetition penalty",
|
189 |
+
value=1.1,
|
190 |
+
minimum=1.0,
|
191 |
+
maximum=2.0,
|
192 |
+
step=0.05,
|
193 |
+
interactive=True,
|
194 |
+
info="Penalize repeated tokens",
|
195 |
+
)
|
196 |
+
with gr.Column():
|
197 |
+
version = gr.Dropdown(
|
198 |
+
[
|
199 |
+
"smol_llama-101M-GQA-python",
|
200 |
+
],
|
201 |
+
value="smol_llama-101M-GQA-python",
|
202 |
+
label="Version",
|
203 |
+
info="",
|
204 |
+
)
|
205 |
+
gr.Markdown(disclaimer)
|
206 |
+
gr.Examples(
|
207 |
+
examples=examples,
|
208 |
+
inputs=[
|
209 |
+
instruction,
|
210 |
+
temperature,
|
211 |
+
max_new_tokens,
|
212 |
+
top_p,
|
213 |
+
repetition_penalty,
|
214 |
+
version,
|
215 |
+
],
|
216 |
+
cache_examples=False,
|
217 |
+
fn=gradio_interface,
|
218 |
+
outputs=[output],
|
219 |
+
)
|
220 |
+
gr.Markdown(base_model_info)
|
221 |
+
gr.Markdown(formats)
|
222 |
+
|
223 |
+
submit.click(
|
224 |
+
gradio_interface,
|
225 |
+
inputs=[
|
226 |
+
instruction,
|
227 |
+
temperature,
|
228 |
+
max_new_tokens,
|
229 |
+
top_p,
|
230 |
+
repetition_penalty,
|
231 |
+
],
|
232 |
+
outputs=[output],
|
233 |
+
# preprocess=False,
|
234 |
+
max_batch_size=2,
|
235 |
+
show_progress=True,
|
236 |
+
)
|
237 |
+
|
238 |
+
demo.queue(max_size=10).launch(
|
239 |
+
debug=True,
|
240 |
+
server_port=DEFAULT_PORT,
|
241 |
+
max_threads=utils.get_workers(),
|
242 |
+
)
|
constants.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
END_OF_TEXT = "<|endoftext|>"
|
2 |
+
|
3 |
+
# Near zero temperature to avoid division by zero
|
4 |
+
MIN_TEMPERATURE = 1e-4
|
settings.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# URLs for the StarCoder Models/APIs
|
2 |
+
DEFAULT_HUGGINGFACE_MODELS_API_BASE_URL = "https://api-inference.huggingface.co/models/"
|
3 |
+
DEFAULT_STARCODER_API_PATH = "bigcode/starcoder/"
|
4 |
+
DEFAULT_STARCODER_BASE_API_PATH = "bigcode/starcoderbase/"
|
5 |
+
FIM_INDICATOR = "<FILL_HERE>"
|
6 |
+
DEFAULT_PORT = 7860
|
7 |
+
|
8 |
+
STATIC_PATH = "static"
|
9 |
+
|
10 |
+
DEFAULT_SETTINGS = dict(
|
11 |
+
temperature=0.9,
|
12 |
+
max_new_tokens=256,
|
13 |
+
top_p=0.95,
|
14 |
+
repetition_penalty=1.0,
|
15 |
+
version="StarCoder",
|
16 |
+
)
|
static/loading-icon.svg
ADDED
static/styles.css
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@import url('https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:wght@400;600;700&display=swap');
|
2 |
+
|
3 |
+
h1, h2 {
|
4 |
+
font-family: 'IBM Plex Mono', sans-serif;
|
5 |
+
}
|
6 |
+
|
7 |
+
.generating {
|
8 |
+
visibility: hidden
|
9 |
+
}
|
10 |
+
|
11 |
+
.gradio-container {
|
12 |
+
color: black
|
13 |
+
}
|
14 |
+
|
15 |
+
/* monospace_css */
|
16 |
+
#q-input textarea {
|
17 |
+
font-family: monospace, 'Consolas', Courier, monospace;
|
18 |
+
}
|
19 |
+
|
20 |
+
/* Share Button */
|
21 |
+
|
22 |
+
/* it was hidden directly inside the svg xml content */
|
23 |
+
#share-btn-loading-icon {
|
24 |
+
display: none;
|
25 |
+
}
|
26 |
+
|
27 |
+
a {
|
28 |
+
text-decoration-line: underline;
|
29 |
+
font-weight: 600;
|
30 |
+
}
|
31 |
+
|
32 |
+
.animate-spin {
|
33 |
+
animation: spin 1s linear infinite;
|
34 |
+
}
|
35 |
+
|
36 |
+
@keyframes spin {
|
37 |
+
from {
|
38 |
+
transform: rotate(0deg);
|
39 |
+
}
|
40 |
+
to {
|
41 |
+
transform: rotate(360deg);
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
#share-btn-container {
|
46 |
+
display: flex;
|
47 |
+
padding-left: 0.5rem !important;
|
48 |
+
padding-right: 0.5rem !important;
|
49 |
+
background-color: #000000;
|
50 |
+
justify-content: center;
|
51 |
+
align-items: center;
|
52 |
+
border-radius: 9999px !important;
|
53 |
+
width: 15rem;
|
54 |
+
}
|
55 |
+
|
56 |
+
#share-btn {
|
57 |
+
all: initial;
|
58 |
+
color: #ffffff;
|
59 |
+
font-weight: 600;
|
60 |
+
cursor: pointer;
|
61 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
62 |
+
margin-left: 0.5rem !important;
|
63 |
+
padding-top: 0.25rem !important;
|
64 |
+
padding-bottom: 0.25rem !important;
|
65 |
+
}
|
66 |
+
|
67 |
+
#share-btn * {
|
68 |
+
all: unset;
|
69 |
+
}
|
70 |
+
|
71 |
+
#share-btn-container div:nth-child(-n+2) {
|
72 |
+
width: auto !important;
|
73 |
+
min-height: 0px !important;
|
74 |
+
}
|
75 |
+
|
76 |
+
#share-btn-container .wrap {
|
77 |
+
display: none !important;
|
78 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from settings import STATIC_PATH
|
5 |
+
|
6 |
+
|
7 |
+
def get_file_as_string(file_name, path=STATIC_PATH) -> str:
|
8 |
+
"""Loads the content of a file given its name
|
9 |
+
and returns all of its lines as a single string
|
10 |
+
if a file path is given, it will be used
|
11 |
+
instead of the default static path (from settings)
|
12 |
+
|
13 |
+
Args:
|
14 |
+
file_name (_type_): The name of the file to load.
|
15 |
+
path (str, optional): The path to the file. Defaults to the current directory.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
str: The content of the file as a single string
|
19 |
+
"""
|
20 |
+
with open(os.path.join(path, file_name), mode="r", encoding="UTF-8") as f:
|
21 |
+
return f.read()
|
22 |
+
|
23 |
+
|
24 |
+
def get_sections(string: str, delimiter: str, up_to: int = None) -> List[str]:
|
25 |
+
"""Splits a string into sections given a delimiter
|
26 |
+
|
27 |
+
Args:
|
28 |
+
string (str): The string to split
|
29 |
+
delimiter (str): The delimiter to use
|
30 |
+
up_to (int, optional): The maximum number of sections to return.
|
31 |
+
Defaults to None (which means all sections)
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
List[str]: The list of sections (up to the given limit, if any provided)
|
35 |
+
"""
|
36 |
+
return [
|
37 |
+
section.strip()
|
38 |
+
for section in string.split(delimiter)
|
39 |
+
if (section and not section.isspace())
|
40 |
+
][:up_to]
|
41 |
+
|
42 |
+
|
43 |
+
def get_workers(safety: int = 4) -> int:
|
44 |
+
"""Return the number of cores available on the current system, minus a safety margin."""
|
45 |
+
return max(1, os.cpu_count() - safety)
|