Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py | |
import os, json | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.modeling_utils import ModelMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from .unet_2d_blocks import ( | |
CrossAttnDownBlock2D, | |
CrossAttnUpBlock2D, | |
DownBlock2D, | |
UNetMidBlock2DCrossAttn, | |
# UNetMidBlock2DSimpleCrossAttn, | |
UpBlock2D, | |
get_down_block, | |
get_up_block, | |
) | |
from .resnet_2d import InflatedConv3d | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNet2DConditionOutput(BaseOutput): | |
""" | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor | |
class UNet2DConditionModel(ModelMixin, ConfigMixin): | |
r""" | |
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep | |
and returns sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the models (such as downloading or saving, etc.) | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): | |
The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
The tuple of upsample blocks to use. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. | |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config | |
for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`. | |
class_embed_type (`str`, *optional*, defaults to None): The type of class embedding to use which is ultimately | |
summed with the time embeddings. Choose from `None`, `"timestep"`, or `"identity"`. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
), | |
mid_block_type: str = "UNetMidBlock2DCrossAttn", | |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1280, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
use_sc_attn: bool = False, | |
use_st_attn: bool = False, | |
st_attn_idx: int = None, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
time_embed_dim = block_out_channels[0] * 4 | |
# input | |
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
# time | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_sc_attn=use_sc_attn, | |
# idx range from 0 to 2, i.e., ['CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'] | |
use_st_attn=True if (use_st_attn and i == st_attn_idx) else False, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlock2DCrossAttn": | |
self.mid_block = UNetMidBlock2DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
use_sc_attn=use_sc_attn, | |
use_st_attn=use_st_attn, | |
) | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
# count how many layers upsample the videos | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=reversed_attention_head_dim[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_sc_attn=use_sc_attn, | |
# idx range from 0 to 2, i.e., ['UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'] | |
use_st_attn=True if (use_st_attn and i-1 == st_attn_idx) else False, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
self.conv_act = nn.SiLU() | |
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_slicable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_slicable_dims(module) | |
num_slicable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_slicable_layers * [1] | |
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
normal_infer: bool = False, | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=self.dtype) | |
emb = self.time_embedding(t_emb) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
# pre-process | |
sample = self.conv_in(sample) | |
# down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
normal_infer=normal_infer, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
# mid | |
sample = self.mid_block( | |
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, | |
normal_infer=normal_infer, | |
) | |
# up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
normal_infer=normal_infer, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return UNet2DConditionOutput(sample=sample) | |
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
r""" | |
for gradio demo | |
""" | |
import diffusers | |
__version__ = diffusers.__version__ | |
from diffusers.utils import ( | |
CONFIG_NAME, | |
DIFFUSERS_CACHE, | |
HUGGINGFACE_CO_RESOLVE_ENDPOINT, | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
is_accelerate_available, | |
is_safetensors_available, | |
is_torch_version, | |
logging, | |
) | |
if is_torch_version(">=", "1.9.0"): | |
_LOW_CPU_MEM_USAGE_DEFAULT = True | |
else: | |
_LOW_CPU_MEM_USAGE_DEFAULT = False | |
if is_accelerate_available(): | |
import accelerate | |
from accelerate.utils import set_module_tensor_to_device | |
from accelerate.utils.versions import is_torch_version | |
if is_safetensors_available(): | |
import safetensors | |
from diffusers.modeling_utils import load_state_dict | |
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
output_loading_info = kwargs.pop("output_loading_info", False) | |
local_files_only = kwargs.pop("local_files_only", False) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
subfolder = kwargs.pop("subfolder", None) | |
device_map = kwargs.pop("device_map", None) | |
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
# custom arg | |
use_sc_attn = kwargs.pop("use_sc_attn", True) | |
use_st_attn = kwargs.pop("use_st_attn", True) | |
st_attn_idx = kwargs.pop("st_attn_idx", 0) | |
if low_cpu_mem_usage and not is_accelerate_available(): | |
low_cpu_mem_usage = False | |
logger.warning( | |
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
" install accelerate\n```\n." | |
) | |
if device_map is not None and not is_accelerate_available(): | |
raise NotImplementedError( | |
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
" `device_map=None`. You can install accelerate with `pip install accelerate`." | |
) | |
# Check if we can handle device_map and dispatching the weights | |
if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `device_map=None`." | |
) | |
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `low_cpu_mem_usage=False`." | |
) | |
if low_cpu_mem_usage is False and device_map is not None: | |
raise ValueError( | |
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" | |
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
) | |
user_agent = { | |
"diffusers": __version__, | |
"file_type": "model", | |
"framework": "pytorch", | |
} | |
# Load config if we don't provide a configuration | |
config_path = pretrained_model_name_or_path | |
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the | |
# Load model | |
model_file = None | |
if is_safetensors_available(): | |
try: | |
model_file = cls._get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=SAFETENSORS_WEIGHTS_NAME, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
) | |
except: | |
pass | |
if model_file is None: | |
model_file = cls._get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=WEIGHTS_NAME, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
) | |
if low_cpu_mem_usage: | |
# Instantiate model with empty weights | |
with accelerate.init_empty_weights(): | |
config, unused_kwargs = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
device_map=device_map, | |
**kwargs, | |
) | |
# custom arg | |
config['use_sc_attn'] = use_sc_attn | |
config['use_st_attn'] = use_st_attn | |
config['st_attn_idx'] = st_attn_idx | |
model = cls.from_config(config, **unused_kwargs) | |
# if device_map is Non,e load the state dict on move the params from meta device to the cpu | |
if device_map is None: | |
param_device = "cpu" | |
state_dict = load_state_dict(model_file) | |
# move the parms from meta device to cpu | |
for param_name, param in state_dict.items(): | |
set_module_tensor_to_device(model, param_name, param_device, value=param) | |
else: # else let accelerate handle loading and dispatching. | |
# Load weights and dispatch according to the device_map | |
# by deafult the device_map is None and the weights are loaded on the CPU | |
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map) | |
loading_info = { | |
"missing_keys": [], | |
"unexpected_keys": [], | |
"mismatched_keys": [], | |
"error_msgs": [], | |
} | |
else: | |
config, unused_kwargs = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
device_map=device_map, | |
**kwargs, | |
) | |
# custom arg | |
config['use_sc_attn'] = use_sc_attn | |
config['use_st_attn'] = use_st_attn | |
config['st_attn_idx'] = st_attn_idx | |
model = cls.from_config(config, **unused_kwargs) | |
state_dict = load_state_dict(model_file) | |
dtype = set(v.dtype for v in state_dict.values()) | |
if len(dtype) > 1 and torch.float32 not in dtype: | |
raise ValueError( | |
f"The weights of the model file {model_file} have a mixture of incompatible dtypes {dtype}. Please" | |
f" make sure that {model_file} weights have only one dtype." | |
) | |
elif len(dtype) > 1 and torch.float32 in dtype: | |
dtype = torch.float32 | |
else: | |
dtype = dtype.pop() | |
# move model to correct dtype | |
model = model.to(dtype) | |
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( | |
model, | |
state_dict, | |
model_file, | |
pretrained_model_name_or_path, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
) | |
loading_info = { | |
"missing_keys": missing_keys, | |
"unexpected_keys": unexpected_keys, | |
"mismatched_keys": mismatched_keys, | |
"error_msgs": error_msgs, | |
} | |
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
) | |
elif torch_dtype is not None: | |
model = model.to(torch_dtype) | |
model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
# Set model in evaluation mode to deactivate DropOut modules by default | |
model.eval() | |
if output_loading_info: | |
return model, loading_info | |
return model | |