Spaces:
Running
on
A10G
Running
on
A10G
# ------------------------------------------------------------------------ | |
# Copyright (c) 2023-present, BAAI. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------ | |
"""Gradio application.""" | |
import argparse | |
import multiprocessing as mp | |
import os | |
import time | |
import numpy as np | |
import torch | |
from tokenize_anything import engine | |
from tokenize_anything.utils.image import im_rescale | |
from tokenize_anything.utils.image import im_vstack | |
def parse_args(): | |
"""Parse arguments.""" | |
parser = argparse.ArgumentParser(description="Launch gradio application") | |
parser.add_argument("--model-type", type=str, default="tap_vit_h") | |
parser.add_argument("--checkpoint", type=str, default="models/tap_vit_h_v1_1.pkl") | |
parser.add_argument("--concept", type=str, default="concepts/merged_2560.pkl") | |
parser.add_argument("--device", nargs="+", type=int, default=[0], help="Index of devices") | |
return parser.parse_args() | |
class Predictor(object): | |
"""Predictor.""" | |
def __init__(self, model, kwargs): | |
self.model = model | |
self.kwargs = kwargs | |
self.prompt_size = kwargs.get("prompt_size", 256) | |
self.model.concept_projector.reset_weights(kwargs["concept_weights"]) | |
self.model.text_decoder.reset_cache(max_batch_size=self.prompt_size) | |
def preprocess_images(self, imgs): | |
"""Preprocess the inference images.""" | |
im_batch, im_shapes, im_scales = [], [], [] | |
for img in imgs: | |
scaled_imgs, scales = im_rescale(img, scales=[1024]) | |
im_batch += scaled_imgs | |
im_scales += scales | |
im_shapes += [x.shape[:2] for x in scaled_imgs] | |
im_batch = im_vstack(im_batch, self.model.pixel_mean_value, size=(1024, 1024)) | |
im_shapes = np.array(im_shapes) | |
im_scales = np.array(im_scales).reshape((len(im_batch), -1)) | |
im_info = np.hstack([im_shapes, im_scales]).astype("float32") | |
return im_batch, im_info | |
def get_results(self, examples): | |
"""Return the results.""" | |
# Preprocess images and prompts. | |
imgs = [example["img"] for example in examples] | |
points = np.concatenate([example["points"] for example in examples]) | |
im_batch, im_info = self.preprocess_images(imgs) | |
num_prompts = points.shape[0] if len(points.shape) > 2 else 1 | |
batch_shape = im_batch.shape[0], num_prompts // im_batch.shape[0] | |
batch_points = points.reshape(batch_shape + (-1, 3)) | |
batch_points[:, :, :, :2] *= im_info[:, None, None, 2:4] | |
batch_points = batch_points.reshape(points.shape) | |
# Predict tokens and masks. | |
inputs = self.model.get_inputs({"img": im_batch}) | |
inputs.update(self.model.get_features(inputs)) | |
outputs = self.model.get_outputs(dict(**inputs, **{"points": batch_points})) | |
# Select final mask. | |
iou_pred = outputs["iou_pred"].cpu().numpy() | |
point_score = batch_points[:, 0, 2].__eq__(2).__sub__(0.5)[:, None] | |
rank_scores = iou_pred + point_score * ([1000] + [0] * (iou_pred.shape[1] - 1)) | |
mask_index = np.arange(rank_scores.shape[0]), rank_scores.argmax(1) | |
iou_scores = outputs["iou_pred"][mask_index].cpu().numpy().reshape(batch_shape) | |
# Upscale masks to the original image resolution. | |
mask_pred = outputs["mask_pred"][mask_index].unsqueeze_(1) | |
mask_pred = self.model.upscale_masks(mask_pred, im_batch.shape[1:-1]) | |
mask_pred = mask_pred.view(batch_shape + mask_pred.shape[2:]) | |
# Predict concepts. | |
concepts, scores = self.model.predict_concept(outputs["sem_embeds"][mask_index]) | |
concepts, scores = [x.reshape(batch_shape) for x in (concepts, scores)] | |
# Generate captions. | |
sem_tokens = outputs["sem_tokens"][mask_index] | |
captions = self.model.generate_text(sem_tokens).reshape(batch_shape) | |
# Postprocess results. | |
results = [] | |
for i in range(batch_shape[0]): | |
pred_h, pred_w = im_info[i, :2].astype("int") | |
masks = mask_pred[i : i + 1, :, :pred_h, :pred_w] | |
masks = self.model.upscale_masks(masks, imgs[i].shape[:2]).flatten(0, 1) | |
results.append( | |
{ | |
"scores": np.stack([iou_scores[i], scores[i]], axis=-1), | |
"masks": masks.gt(0).cpu().numpy().astype("uint8"), | |
"concepts": concepts[i], | |
"captions": captions[i], | |
} | |
) | |
return results | |
class ServingCommand(object): | |
"""Command to run serving.""" | |
def __init__(self, output_queue): | |
self.output_queue = output_queue | |
self.output_dict = mp.Manager().dict() | |
self.output_index = mp.Value("i", 0) | |
def postprocess_outputs(self, outputs): | |
"""Main the detection objects.""" | |
scores, masks = outputs["scores"], outputs["masks"] | |
concepts, captions = outputs["concepts"], outputs["captions"] | |
text_template = "{} ({:.2f}, {:.2f}): {}" | |
text_contents = concepts, scores[:, 0], scores[:, 1], captions | |
texts = np.array([text_template.format(*vals) for vals in zip(*text_contents)]) | |
return masks, texts | |
def run(self): | |
"""Main loop to make the serving outputs.""" | |
while True: | |
img_id, outputs = self.output_queue.get() | |
self.output_dict[img_id] = self.postprocess_outputs(outputs) | |
def build_gradio_app(queues, command): | |
"""Build the gradio application.""" | |
import gradio as gr | |
import gradio_image_prompter as gr_ext | |
title = "Tokenize Anything" | |
header = ( | |
"<div align='center'>" | |
"<h1>Tokenize Anything via Prompting</h1>" | |
"<h3><a href='https://arxiv.org/abs/2312.09128' target='_blank' rel='noopener'>[paper]</a>" | |
"<a href='https://github.com/baaivision/tokenize-anything' target='_blank' rel='noopener'>[code]</a></h3>" # noqa | |
"<h3>A promptable model capable of simultaneous segmentation, recognition and caption.</h3>" # noqa | |
"</div>" | |
) | |
theme = "soft" | |
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;} | |
#anno-img .mask.active {opacity: 0.7}""" | |
def get_click_examples(): | |
assets_dir = os.path.join(os.path.dirname(__file__), "assets") | |
app_images = list(filter(lambda x: x.startswith("app_image"), os.listdir(assets_dir))) | |
app_images.sort() | |
return [{"image": os.path.join(assets_dir, x)} for x in app_images] | |
def on_reset_btn(): | |
click_img, draw_img = gr.Image(None), gr.ImageEditor(None) | |
anno_img = gr.AnnotatedImage(None) | |
return click_img, draw_img, anno_img | |
def on_submit_btn(click_img, mask_img, prompt, multipoint): | |
img, points = None, np.array([[[0, 0, 4]]]) | |
if prompt == 0 and click_img is not None: | |
img, points = click_img["image"], click_img["points"] | |
points = np.array(points).reshape((-1, 2, 3)) | |
if multipoint == 1: | |
points = points.reshape((-1, 3)) | |
lt = points[np.where(points[:, 2] == 2)[0]][None, :, :] | |
rb = points[np.where(points[:, 2] == 3)[0]][None, :, :] | |
poly = points[np.where(points[:, 2] <= 1)[0]][None, :, :] | |
points = [lt, rb, poly] if len(lt) > 0 else [poly, np.array([[[0, 0, 4]]])] | |
points = np.concatenate(points, axis=1) | |
elif prompt == 1 and mask_img is not None: | |
img, points = mask_img["background"], [] | |
for layer in mask_img["layers"]: | |
ys, xs = np.nonzero(layer[:, :, 0]) | |
if len(ys) > 0: | |
keep = np.linspace(0, ys.shape[0], 11, dtype="int64")[1:-1] | |
points.append(np.stack([xs[keep][None, :], ys[keep][None, :]], 2)) | |
if len(points) > 0: | |
points = np.concatenate(points).astype("float32") | |
points = np.pad(points, [(0, 0), (0, 0), (0, 1)], constant_values=1) | |
pad_points = np.array([[[0, 0, 4]]], "float32").repeat(points.shape[0], 0) | |
points = np.concatenate([points, pad_points], axis=1) | |
img = img[:, :, (2, 1, 0)] if img is not None else img | |
img = np.zeros((480, 640, 3), dtype="uint8") if img is None else img | |
points = np.array([[[0, 0, 4]]]) if (len(points) == 0 or points.size == 0) else points | |
inputs = {"img": img, "points": points.astype("float32")} | |
with command.output_index.get_lock(): | |
command.output_index.value += 1 | |
img_id = command.output_index.value | |
queues[img_id % len(queues)].put((img_id, inputs)) | |
while img_id not in command.output_dict: | |
time.sleep(0.005) | |
masks, texts = command.output_dict.pop(img_id) | |
annotations = [(x, y) for x, y in zip(masks, texts)] | |
return inputs["img"][:, :, ::-1], annotations | |
app, _ = gr.Blocks(title=title, theme=theme, css=css).__enter__(), gr.Markdown(header) | |
container, column = gr.Row().__enter__(), gr.Column().__enter__() | |
click_tab, click_img = gr.Tab("Point+Box").__enter__(), gr_ext.ImagePrompter(show_label=False) | |
interactions = "LeftClick (FG) | MiddleClick (BG) | PressMove (Box)" | |
gr.Markdown("<h3 style='text-align: center'>[π±οΈ | ποΈ]: ππ {} ππ </h3>".format(interactions)) | |
point_opt = gr.Radio(["Batch", "Ensemble"], label="Multipoint", type="index", value="Batch") | |
gr.Examples(get_click_examples(), inputs=[click_img]) | |
_, draw_tab = click_tab.__exit__(), gr.Tab("Sketch").__enter__() | |
draw_img, _ = gr.ImageEditor(show_label=False), draw_tab.__exit__() | |
prompt_opt = gr.Radio(["Click", "Draw"], type="index", visible=False, value="Click") | |
row, reset_btn, submit_btn = gr.Row().__enter__(), gr.Button("Reset"), gr.Button("Execute") | |
_, _, column = row.__exit__(), column.__exit__(), gr.Column().__enter__() | |
anno_img = gr.AnnotatedImage(elem_id="anno-img", show_label=False) | |
reset_btn.click(on_reset_btn, [], [click_img, draw_img, anno_img]) | |
submit_btn.click(on_submit_btn, [click_img, draw_img, prompt_opt, point_opt], [anno_img]) | |
click_tab.select(lambda: "Click", [], [prompt_opt]) | |
draw_tab.select(lambda: "Draw", [], [prompt_opt]) | |
column.__exit__(), container.__exit__(), app.__exit__() | |
return app | |
if __name__ == "__main__": | |
args = parse_args() | |
queues = [mp.Queue(1024) for _ in range(len(args.device) + 1)] | |
commands = [ | |
engine.InferenceCommand( | |
queues[i], | |
queues[-1], | |
kwargs={ | |
"model_type": args.model_type, | |
"weights": args.checkpoint, | |
"concept_weights": args.concept, | |
"device": args.device[i], | |
"predictor_type": Predictor, | |
"verbose": i == 0, | |
}, | |
) | |
for i in range(len(args.device)) | |
] | |
commands += [ServingCommand(queues[-1])] | |
actors = [mp.Process(target=command.run, daemon=True) for command in commands] | |
for actor in actors: | |
actor.start() | |
app = build_gradio_app(queues[:-1], commands[-1]) | |
app.queue() | |
app.launch(show_api=False) | |