Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
import sys | |
import io | |
import requests | |
import json | |
import base64 | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
def inference_mask1(prompt, | |
img, | |
img_): | |
files = { | |
"pimage" : resizeImg(prompt["image"]), | |
"pmask" : resizeImg(prompt["mask"]), | |
"img" : resizeImg(img), | |
"img_" : resizeImg(img_) | |
} | |
#r = requests.post("https://flagstudio.baai.ac.cn/painter/run", json = files) | |
r = requests.post("http://120.92.79.209/painter/run", json = files) | |
a = json.loads(r.text) | |
res = [] | |
for i in range(len(a)): | |
#out = Image.open(io.BytesIO(base64.b64decode(a[i]))) | |
#out = out.resize((224, 224)) | |
#res.append(np.uint8(np.array(out))) | |
res.append(np.uint8(np.array(Image.open(io.BytesIO(base64.b64decode(a[i])))))) | |
return res | |
def resizeImg(img): | |
res, hres = 448, 448 | |
img = Image.fromarray(img).convert("RGB") | |
img = img.resize((res, hres)) | |
temp = io.BytesIO() | |
img.save(temp, format="WEBP") | |
return base64.b64encode(temp.getvalue()).decode('ascii') | |
def inference_mask_cat( | |
prompt, | |
img, | |
img_, | |
): | |
output_list = [img, img_] | |
return output_list | |
# define app features and run | |
examples = [ | |
['./images/hmbb_1.jpg', './images/hmbb_2.jpg', './images/hmbb_3.jpg'], | |
['./images/rainbow_1.jpg', './images/rainbow_2.jpg', './images/rainbow_3.jpg'], | |
['./images/earth_1.jpg', './images/earth_2.jpg', './images/earth_3.jpg'], | |
['./images/obj_1.jpg', './images/obj_2.jpg', './images/obj_3.jpg'], | |
['./images/ydt_2.jpg', './images/ydt_1.jpg', './images/ydt_3.jpg'], | |
] | |
demo_mask = gr.Interface(fn=inference_mask1, | |
inputs=[gr.ImageMask(brush_radius=8, label="prompt (提示图)"), gr.Image(label="img1 (测试图1)"), gr.Image(label="img2 (测试图2)")], | |
#outputs=[gr.Image(shape=(448, 448), label="output1 (输出图1)"), gr.Image(shape=(448, 448), label="output2 (输出图2)")], | |
outputs=[gr.Image(label="output1 (输出图1)").style(height=256, width=256), gr.Image(label="output2 (输出图2)").style(height=256, width=256)], | |
#outputs=gr.Gallery(label="outputs (输出图)"), | |
examples=examples, | |
#title="SegGPT for Any Segmentation<br>(Painter Inside)", | |
description="<p> \ | |
Choose an example below 🔥 🔥 🔥 <br>\ | |
Or, upload by yourself: <br>\ | |
1. Upload images to be tested to 'img1' and/or 'img2'. <br>2. Upload a prompt image to 'prompt' and draw a mask. <br>\ | |
<br> \ | |
💎 The more accurate you annotate, the more accurate the model predicts. <br>\ | |
💎 Examples below were never trained and are randomly selected for testing in the wild. <br>\ | |
💎 Current UI interface only unleashes a small part of the capabilities of SegGPT, i.e., 1-shot case. \ | |
</p>", | |
cache_examples=False, | |
allow_flagging="never", | |
) | |
title = "SegGPT: Segmenting Everything In Context<br> \ | |
<div align='center'> \ | |
<h2><a href='https://arxiv.org/abs/2304.03284' target='_blank' rel='noopener'>[paper]</a> \ | |
<a href='https://github.com/baaivision/Painter' target='_blank' rel='noopener'>[code]</a></h2> \ | |
<br> \ | |
<image src='file/rainbow__.gif' width='720px' /> \ | |
<h2>SegGPT performs arbitrary segmentation tasks in images or videos via in-context inference, such as object instance, stuff, part, contour, and text, with only one single model.</h2> \ | |
</div> \ | |
" | |
demo = gr.TabbedInterface([demo_mask, ], ['General 1-shot', ], title=title) | |
#demo.launch(share=True, auth=("baai", "vision")) | |
demo.launch(enable_queue=False) | |
#demo.launch(server_name="0.0.0.0", server_port=34311) | |
# - | |