EmbodiedVerse / app.py
lixuejing
update
6981fa7
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
EVALUATION_METRIC_TEXT,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
NUMERIC_INTERVALS,
QUOTACOLS,
QUOTATYPES,
AutoEvalColumnQuota,
BENCHMARK_QUOTACOLS
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_quota
from src.submission.submit import add_new_eval
from src.scripts.update_all_request_files import update_dynamic_files
from src.tools.collections import update_collections
from src.tools.datastatics import get_statics
#from src.tools.plots import (
# create_plot_df,
# create_scores_df,
#)
def restart_space():
API.restart_space(repo_id=REPO_ID, token=TOKEN)
def init_space():
print("begin init space")
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
print("QUOTACOLS+COLS",list(set(QUOTACOLS+COLS)))
raw_data, original_df = get_leaderboard_df(
results_path=EVAL_RESULTS_PATH,
requests_path=EVAL_REQUESTS_PATH,
dynamic_path=DYNAMIC_INFO_FILE_PATH,
#cols=COLS,
#benchmark_cols=BENCHMARK_COLS,
cols=list(set(QUOTACOLS+COLS)),
benchmark_cols=list(set(BENCHMARK_QUOTACOLS+BENCHMARK_COLS))
)
#update_collections(original_df.copy())
leaderboard_df = original_df.copy()
raw_data_quota, original_df_quota = get_leaderboard_df(
results_path=EVAL_RESULTS_PATH,
requests_path=EVAL_REQUESTS_PATH,
dynamic_path=DYNAMIC_INFO_FILE_PATH,
cols=list(set(QUOTACOLS+COLS)),
benchmark_cols=list(set(BENCHMARK_QUOTACOLS+BENCHMARK_COLS))
)
#update_collections(original_df.copy())
leaderboard_df_quota = original_df_quota.copy()
#plot_df = create_plot_df(create_scores_df(raw_data))
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
#return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
return leaderboard_df, original_df, leaderboard_df_quota, original_df_quota,finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
leaderboard_df, original_df, leaderboard_df_quota, original_df_quota, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
# Searching and filtering
#type_query: list,
#precision_query: str,
#size_query: list,
#hide_models: list,
def update_table(
hidden_df: pd.DataFrame,
columns: list,
query: str,
):
print("query", query)
#filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
filtered_df = filter_queries(query, hidden_df)
df = select_columns(filtered_df, columns)
return df
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
query = request.query_params.get("query") or ""
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
dummy_col = [AutoEvalColumn.dummy.name]
#AutoEvalColumn.model_type_symbol.name,
#AutoEvalColumn.model.name,
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame):
"""Added by Abishek"""
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def update_table_q(
hidden_df: pd.DataFrame,
columns: list,
query: str,
):
filtered_df = filter_queriesq(query, hidden_df)
df = select_columnsq(filtered_df, columns)
return df
def search_tableq(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumnQuota.dummy.name].str.contains(query, case=False))]
def select_columnsq(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden]
dummy_col = [AutoEvalColumnQuota.dummy.name]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in QUOTACOLS if c in df.columns and c in columns] + dummy_col
]
return filtered_df
def filter_queriesq(query: str, filtered_df: pd.DataFrame):
"""Added by Abishek"""
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_tableq(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumnQuota.model.name, AutoEvalColumnQuota.precision.name, AutoEvalColumnQuota.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
) -> pd.DataFrame:
# Show all models
if "Private or deleted" in hide_models:
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
else:
filtered_df = df
if "Contains a merge/moerge" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
if "MoE" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
if "Flagged" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
leaderboard_df = filter_models(
df=leaderboard_df,
type_query=[t.to_str(" : ") for t in ModelType],
size_query=list(NUMERIC_INTERVALS.keys()),
precision_query=[i.value.name for i in Precision],
hide_models=[], # Deleted, merges, flagged, MoEs
)
leaderboard_df_quota = filter_models(
df=leaderboard_df_quota,
type_query=[t.to_str(" : ") for t in ModelType],
size_query=list(NUMERIC_INTERVALS.keys()),
precision_query=[i.value.name for i in Precision],
hide_models=[], # Deleted, merges, flagged, MoEs
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 EmbodiedVerse-Open", elem_id="vlm-benchmark-tab-table", id=0):
#leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
+ [AutoEvalColumnQuota.dummy.name]
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
#column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
#value=leaderboard_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
# Define a hidden component that will trigger a reload only if a query parameter has been set
hidden_search_bar = gr.Textbox(value="", visible=False)
hidden_search_bar.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
# Check query parameter once at startup and update search bar + hidden component
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
#for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]:
for selector in [shown_columns]:#, filter_columns_type, filter_columns_precision, filter_columns_size]:#, hide_models]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("🏅 EmbodiedVerse-Open-Sampled", elem_id="vlm-quota-benchmark-tab-table", id=1):
#leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumnQuota)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumnQuota)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df_quota[
[c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden]
+ shown_columns.value
+ [AutoEvalColumnQuota.dummy.name]
],
headers=[c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden] + shown_columns.value,
datatype=QUOTATYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
#column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df_quota[QUOTACOLS],
headers=QUOTACOLS,
datatype=QUOTATYPES,
visible=False,
)
search_bar.submit(
update_table_q,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
# Define a hidden component that will trigger a reload only if a query parameter has been set
hidden_search_bar = gr.Textbox(value="", visible=False)
hidden_search_bar.change(
update_table_q,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
# Check query parameter once at startup and update search bar + hidden component
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
#for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]:
for selector in [shown_columns]:#, filter_columns_type, filter_columns_precision, filter_columns_size]: #, hide_models]:
selector.change(
update_table_q,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
queue=True,
)
gr.Markdown(EVALUATION_METRIC_TEXT, elem_classes="markdown-text")
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.add_job(update_dynamic_files, "cron", minute=30) # launched every hour on the hour
scheduler.add_job(get_statics, 'cron', hour=12, minute=15, timezone='Asia/Shanghai') # 添加定时任务,每天0:30执行一次
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()