Spaces:
Running
on
Zero
Running
on
Zero
import time | |
import gradio as gr | |
import spaces | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
import torch | |
MAX_INPUT_LIMIT = 3584 | |
MODEL_NAME = "Azure99/blossom-v5-9b" | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
GENERATE_CONFIG = dict( | |
max_new_tokens=1536, | |
temperature=0.5, | |
top_p=0.85, | |
top_k=50, | |
repetition_penalty=1.05 | |
) | |
def get_input_ids(inst, history): | |
prefix = ("A chat between a human and an artificial intelligence bot. " | |
"The bot gives helpful, detailed, and polite answers to the human's questions.") | |
patterns = [] | |
for conv in history: | |
patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ') | |
patterns.append(f'{conv[1]}') | |
patterns.append(f'\n|Human|: {inst}\n|Bot|: ') | |
patterns[0] = prefix + patterns[0] | |
input_ids = [] | |
for i, pattern in enumerate(patterns): | |
input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0)) | |
if i % 2 == 1: | |
input_ids += [tokenizer.eos_token_id] | |
return input_ids | |
def chat(inst, history): | |
with torch.no_grad(): | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
input_ids = get_input_ids(inst, history) | |
print(len(input_ids)) | |
if len(input_ids) > MAX_INPUT_LIMIT: | |
yield "The input is too long, please clear the history." | |
return | |
generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device), do_sample=True, | |
streamer=streamer, **GENERATE_CONFIG) | |
Thread(target=model.generate, kwargs=generation_kwargs).start() | |
# stop watch | |
start = time.time() | |
outputs = "" | |
for new_text in streamer: | |
outputs += new_text | |
yield outputs | |
total_time = time.time() - start | |
output_token_len = len(tokenizer.encode(outputs, add_special_tokens=False)) | |
speed = output_token_len / total_time | |
print(f"Speed: {speed:.2f} tokens/s") | |
gr.ChatInterface(chat, | |
chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True), | |
textbox=gr.Textbox(placeholder="", container=False, scale=7), | |
title="Blossom 9B Demo", | |
description='Hello, I am Blossom, an open source conversational large language model.🌠' | |
'<a href="https://github.com/Azure99/BlossomLM">GitHub</a>', | |
theme="soft", | |
examples=["Hello", "What is MBTI", "用Python实现二分查找", "为switch写一篇小红书种草文案,带上emoji"], | |
clear_btn="🗑️Clear", | |
undo_btn="↩️Undo", | |
retry_btn="🔄Retry", | |
submit_btn="➡️Submit", | |
).queue().launch() | |