Azazkhan's picture
Update app.py
cb36667 verified
raw
history blame
1.83 kB
import os
import gradio as gr
import whisper
from gtts import gTTS
import io
from groq import Groq
# Access the API key using environment Variable we set
groq_api_key = os.getenv("GROQ_API_KEY")
groq_client = Groq(api_key= groq_api_key)
# Load the Whisper model
model = whisper.load_model("base") # You can choose other models like "small", "medium", "large"
def process_audio(file_path):
try:
# Load the audio file
audio = whisper.load_audio(file_path)
# Transcribe the audio using Whisper
result = model.transcribe(audio)
text = result["text"]
# Generate a response using Groq
chat_completion = groq_client.chat.completions.create(
messages=[{"role": "user", "content": text}],
model="llama3-8b-8192", # Replace with the correct model if necessary
)
# Access the response using dot notation
response_message = chat_completion.choices[0].message.content.strip()
# Convert the response text to speech
tts = gTTS(response_message)
response_audio_io = io.BytesIO()
tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
response_audio_io.seek(0)
# Save audio to a file to ensure it's generated correctly
with open("response.mp3", "wb") as audio_file:
audio_file.write(response_audio_io.getvalue())
# Return the response text and the path to the saved audio file
return response_message, "response.mp3"
except Exception as e:
return f"An error occurred: {e}", None
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"), # Use type="filepath"
outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")],
live=True
)
iface.launch(share=True)