Spaces:
Sleeping
Sleeping
refactor main app code
Browse files
app.py
CHANGED
|
@@ -2,28 +2,36 @@
|
|
| 2 |
import pandas as pd, panel as pn
|
| 3 |
import hvplot.pandas # noqa
|
| 4 |
|
| 5 |
-
# Data loading and
|
| 6 |
-
df = pd.read_csv(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
return df.assign(Day=df.index.day_name())
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
min_power = cleaned_df['Power_time'].min()
|
| 17 |
|
| 18 |
days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
|
| 19 |
-
weekly_group =
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Plots
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
# Dashboard
|
| 29 |
pn.extension('tabulator', sizing_mode="stretch_width")
|
|
@@ -44,6 +52,12 @@ styles = {
|
|
| 44 |
}
|
| 45 |
|
| 46 |
indicators = pn.FlexBox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
pn.indicators.Number(
|
| 48 |
value=daily_average,
|
| 49 |
name="Average daily supply (Hrs)",
|
|
@@ -52,41 +66,41 @@ indicators = pn.FlexBox(
|
|
| 52 |
styles=styles
|
| 53 |
),
|
| 54 |
pn.indicators.Number(
|
| 55 |
-
value=
|
| 56 |
-
name="
|
| 57 |
default_color="green",
|
| 58 |
-
format=number_format,
|
| 59 |
styles=styles,
|
| 60 |
),
|
| 61 |
pn.indicators.Number(
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
styles=styles,
|
| 67 |
),
|
| 68 |
)
|
| 69 |
|
| 70 |
table = pn.widgets.Tabulator(df.head(10), sizing_mode="stretch_width", name="Table")
|
| 71 |
-
tabs = pn.Tabs(('Daily total', line_plot), ('
|
|
|
|
| 72 |
styles=styles, sizing_mode="scale_both", margin=10)
|
| 73 |
-
logo = '<img src="https://panel.
|
| 74 |
|
| 75 |
text = f"""This is a [Panel](https://panel.holoviz.org) dashboard that shows the number of hours of power supply in Omoku, Rivers State, Nigeria.
|
| 76 |
|
| 77 |
Omoku is divided into three (3) areas in terms of power supply and this data was collected at one of the three areas.
|
| 78 |
|
| 79 |
-
The data was collected by calculating the total number of hours during which there was no power and subtracting it from 24 hours.
|
| 80 |
|
| 81 |
This data was collected consecutively over a period of `{len(df)}` days."""
|
| 82 |
-
|
| 83 |
template = pn.template.FastListTemplate(
|
| 84 |
title="Power supply dashboard",
|
| 85 |
sidebar=[logo, text],
|
| 86 |
sidebar_width=250,
|
| 87 |
-
main=[pn.Column('# Data Summary', indicators, '# Sample Data', table, '# Plots', tabs
|
| 88 |
main_layout=None,
|
| 89 |
accent=ACCENT,
|
| 90 |
)
|
| 91 |
|
| 92 |
-
template.servable()
|
|
|
|
| 2 |
import pandas as pd, panel as pn
|
| 3 |
import hvplot.pandas # noqa
|
| 4 |
|
| 5 |
+
# Data loading and manipulation
|
| 6 |
+
df = pd.read_csv(
|
| 7 |
+
"omoku_data.csv",
|
| 8 |
+
parse_dates=['Date'],
|
| 9 |
+
index_col="Date",
|
| 10 |
+
dtype={"Remark":pd.api.types.CategoricalDtype()}
|
| 11 |
+
)
|
| 12 |
+
df['Day'] = df.index.day_name().astype('category')
|
| 13 |
|
| 14 |
+
recorded = df[df['Power_time'].notna()]
|
| 15 |
+
record_days = len(recorded)
|
|
|
|
| 16 |
|
| 17 |
+
days_with_power = len(recorded[recorded['Power_time'] != 0])
|
| 18 |
+
power_issues = recorded[recorded['Remark'].str.contains('Repairs|Maintenance', case=False, na=False)]
|
| 19 |
|
| 20 |
+
percent_avai = round(days_with_power/record_days *100, 1)
|
| 21 |
+
daily_average = recorded['Power_time'].mean()
|
|
|
|
| 22 |
|
| 23 |
days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
|
| 24 |
+
weekly_group = recorded.groupby('Day', sort=False, observed=True)[['Power_time']].mean().reindex(days)
|
| 25 |
+
|
| 26 |
+
monthly_avg = recorded['Power_time'].resample("ME").mean().reset_index().set_index("Date")
|
| 27 |
+
monthly_avg['Month'] = monthly_avg.index.month_name()
|
| 28 |
|
| 29 |
# Plots
|
| 30 |
+
line_plot = recorded.hvplot.line(y='Power_time', ylabel='Number of hours', title='Total daily power supply')
|
| 31 |
+
density_plot = recorded['Power_time'].hvplot.kde('Power_time', xlabel='Number of hours', xlim=(0,24), yaxis=None, hover=False,
|
| 32 |
+
title='Density distribution of power supply')
|
| 33 |
+
weekly_plot = weekly_group.hvplot.bar(rot=45, ylabel='Number of hours', title='Average power supply by week day')
|
| 34 |
+
monthly_plot = monthly_avg.hvplot.bar(rot=45, hover_tooltips=['Month', 'Power_time'], hover_cols=['Month'], title="Monthly average power supply")
|
| 35 |
|
| 36 |
# Dashboard
|
| 37 |
pn.extension('tabulator', sizing_mode="stretch_width")
|
|
|
|
| 52 |
}
|
| 53 |
|
| 54 |
indicators = pn.FlexBox(
|
| 55 |
+
pn.indicators.Number(
|
| 56 |
+
value=record_days,
|
| 57 |
+
name="Number of days recorded",
|
| 58 |
+
default_color="blue",
|
| 59 |
+
styles=styles,
|
| 60 |
+
),
|
| 61 |
pn.indicators.Number(
|
| 62 |
value=daily_average,
|
| 63 |
name="Average daily supply (Hrs)",
|
|
|
|
| 66 |
styles=styles
|
| 67 |
),
|
| 68 |
pn.indicators.Number(
|
| 69 |
+
value=percent_avai,
|
| 70 |
+
name="Power availability rate",
|
| 71 |
default_color="green",
|
| 72 |
+
format=f"{number_format}%",
|
| 73 |
styles=styles,
|
| 74 |
),
|
| 75 |
pn.indicators.Number(
|
| 76 |
+
value=len(power_issues),
|
| 77 |
+
name="Days in repairs or maintenance",
|
| 78 |
+
default_color="red",
|
| 79 |
+
styles=styles,
|
|
|
|
| 80 |
),
|
| 81 |
)
|
| 82 |
|
| 83 |
table = pn.widgets.Tabulator(df.head(10), sizing_mode="stretch_width", name="Table")
|
| 84 |
+
tabs = pn.Tabs(('Daily total', line_plot), ('Monthly average', monthly_plot),
|
| 85 |
+
('Weekly average',weekly_plot), ('Density distribution', density_plot),
|
| 86 |
styles=styles, sizing_mode="scale_both", margin=10)
|
| 87 |
+
logo = '<img src="https://panel.holoviz.org/_static/logo_stacked.png" width=180 height=150>'
|
| 88 |
|
| 89 |
text = f"""This is a [Panel](https://panel.holoviz.org) dashboard that shows the number of hours of power supply in Omoku, Rivers State, Nigeria.
|
| 90 |
|
| 91 |
Omoku is divided into three (3) areas in terms of power supply and this data was collected at one of the three areas.
|
| 92 |
|
| 93 |
+
The data was collected by calculating the total number of hours during which there was no power and subtracting it from 24 hours.
|
| 94 |
|
| 95 |
This data was collected consecutively over a period of `{len(df)}` days."""
|
| 96 |
+
|
| 97 |
template = pn.template.FastListTemplate(
|
| 98 |
title="Power supply dashboard",
|
| 99 |
sidebar=[logo, text],
|
| 100 |
sidebar_width=250,
|
| 101 |
+
main=[pn.Column('# Data Summary', indicators, '# Sample Data', table, '# Plots', tabs)],
|
| 102 |
main_layout=None,
|
| 103 |
accent=ACCENT,
|
| 104 |
)
|
| 105 |
|
| 106 |
+
template.servable()
|