Ayushnangia's picture
raft
9ef9ef2
raw
history blame
3.09 kB
import cv2
import time
import numpy as np
import onnx
import onnxruntime
from .utils import flow_to_image
class Raft():
def __init__(self, model_path):
# Initialize model
self.initialize_model(model_path)
def __call__(self, img1, img2):
return self.estimate_flow(img1, img2)
def initialize_model(self, model_path):
self.session = onnxruntime.InferenceSession(model_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
# Get model info
self.get_input_details()
self.get_output_details()
def estimate_flow(self, img1, img2):
input_tensor1 = self.prepare_input(img1)
input_tensor2 = self.prepare_input(img2)
outputs = self.inference(input_tensor1, input_tensor2)
self.flow_map = self.process_output(outputs)
return self.flow_map
def prepare_input(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.img_height, self.img_width = img.shape[:2]
img_input = cv2.resize(img, (self.input_width,self.input_height))
# img_input = img_input/255
img_input = img_input.transpose(2, 0, 1)
img_input = img_input[np.newaxis,:,:,:]
return img_input.astype(np.float32)
def inference(self, input_tensor1, input_tensor2):
# start = time.time()
outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor1,
self.input_names[1]: input_tensor2})
# print(time.time() - start)
return outputs
def process_output(self, output):
flow_map = output[1][0].transpose(1, 2, 0)
return flow_map
def draw_flow(self):
# Convert flow to image
flow_img = flow_to_image(self.flow_map)
# Convert to BGR
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_RGB2BGR)
# Resize the depth map to match the input image shape
return cv2.resize(flow_img, (self.img_width,self.img_height))
def get_input_details(self):
model_inputs = self.session.get_inputs()
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
self.input_shape = model_inputs[0].shape
self.input_height = self.input_shape[2]
self.input_width = self.input_shape[3]
def get_output_details(self):
model_outputs = self.session.get_outputs()
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
self.output_shape = model_outputs[0].shape
self.output_height = self.output_shape[2]
self.output_width = self.output_shape[3]
if __name__ == '__main__':
from imread_from_url import imread_from_url
# Initialize model
model_path='../models/raft_things_iter20_480x640.onnx'
flow_estimator = Raft(model_path)
# Read inference image
img1 = imread_from_url("https://github.com/princeton-vl/RAFT/blob/master/demo-frames/frame_0016.png?raw=true")
img2 = imread_from_url("https://github.com/princeton-vl/RAFT/blob/master/demo-frames/frame_0025.png?raw=true")
# Estimate flow and colorize it
flow_map = flow_estimator(img1, img2)
flow_img = flow_estimator.draw_flow()
combined_img = np.hstack((img1, img2, flow_img))
cv2.namedWindow("Estimated flow", cv2.WINDOW_NORMAL)
cv2.imshow("Estimated flow", combined_img)
cv2.waitKey(0)