Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Calculation of the cross-entropy loss function using the huggingface evaluate module.""" | |
import evaluate | |
import datasets | |
import numpy as np | |
import torch | |
from torch import nn, Tensor, tensor | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {Loss Metric}, | |
authors={YU YE}, | |
year={2024} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Calculation of the cross-entropy loss function using the huggingface evaluate module. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
loss: description of the first score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("Aye10032/loss_metric") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'loss': 1.0} | |
""" | |
class LossMetric(evaluate.Metric): | |
"""Calculation of the cross-entropy loss function using the huggingface evaluate module.""" | |
def _info(self): | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Value('int64'), | |
'references': datasets.Value('int64'), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _compute(self, predictions, references): | |
"""Returns the scores""" | |
pred = tensor(np.array(predictions), dtype=torch.float16) | |
label = tensor(np.array(references), dtype=torch.float16) | |
loss_func = nn.CrossEntropyLoss() | |
loss = loss_func(pred, label) | |
mean_loss = loss.item() / label.shape[0] | |
return { | |
"loss": mean_loss, | |
} | |