Spaces:
Sleeping
Sleeping
import torch | |
from vencoder.encoder import SpeechEncoder | |
from vencoder.wavlm.WavLM import WavLM, WavLMConfig | |
class WavLMBasePlus(SpeechEncoder): | |
def __init__(self, vec_path="pretrain/WavLM-Base+.pt", device=None): | |
super().__init__() | |
print("load model(s) from {}".format(vec_path)) | |
checkpoint = torch.load(vec_path) | |
self.cfg = WavLMConfig(checkpoint['cfg']) | |
if device is None: | |
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
self.dev = torch.device(device) | |
self.hidden_dim = self.cfg.encoder_embed_dim | |
self.model = WavLM(self.cfg) | |
self.model.load_state_dict(checkpoint['model']) | |
self.model.to(self.dev).eval() | |
def encoder(self, wav): | |
feats = wav | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
if self.cfg.normalize: | |
feats = torch.nn.functional.layer_norm(feats, feats.shape) | |
with torch.no_grad(): | |
with torch.inference_mode(): | |
units = self.model.extract_features(feats[None, :])[0] | |
return units.transpose(1, 2) | |