Spaces:
Sleeping
Sleeping
import torch | |
from vencoder.dphubert.model import wav2vec2_model | |
from vencoder.encoder import SpeechEncoder | |
class DPHubert(SpeechEncoder): | |
def __init__(self, vec_path="pretrain/DPHuBERT-sp0.75.pth", device=None): | |
super().__init__() | |
print("load model(s) from {}".format(vec_path)) | |
if device is None: | |
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
self.dev = torch.device(device) | |
ckpt = torch.load(vec_path) | |
self.hidden_dim = 768 | |
self.model = wav2vec2_model(**ckpt["config"]).to(self.dev) | |
self.model.load_state_dict(ckpt["state_dict"], strict=False) | |
def encoder(self, wav): | |
feats = wav | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats[None, :] | |
with torch.no_grad(): | |
with torch.inference_mode(): | |
units = self.model(feats)[0] | |
return units.transpose(1,2) | |