medically / admin.py
AxL95's picture
Update admin.py
0a3b5e1 verified
from fastapi import APIRouter, File, UploadFile, HTTPException, Depends
from bson.objectid import ObjectId
import os
import PyPDF2
from io import BytesIO
from datetime import datetime
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
from auth import get_admin_user
from database import get_db
from config import SAVE_FOLDER
from chat import embedding_model
router = APIRouter(prefix="/api/admin", tags=["Administration"])
db=get_db()
@router.post("/knowledge/upload")
async def upload_pdf(
file: UploadFile = File(...),
title: str = None,
tags: str = None,
current_user: dict = Depends(get_admin_user)
):
try:
if not file.filename.endswith('.pdf'):
raise HTTPException(status_code=400, detail="Le fichier doit être un PDF")
contents = await file.read()
pdf_file = BytesIO(contents)
pdf_reader = PyPDF2.PdfReader(pdf_file)
text_content = ""
for page_num in range(len(pdf_reader.pages)):
text_content += pdf_reader.pages[page_num].extract_text() + "\n"
doc_id = ObjectId()
pdf_path = f"/tmp/{str(doc_id)}.pdf"
os.makedirs("files", exist_ok=True)
with open(pdf_path, "wb") as f:
pdf_file.seek(0)
f.write(contents)
print(f"Découpage du document '{title or file.filename}' en chunks...")
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
doc = Document(page_content=text_content, metadata={"title": title or file.filename})
chunks = splitter.split_documents([doc])
print(f"{len(chunks)} morceaux extraits.")
main_document = {
"_id": doc_id,
"title": title or file.filename,
"tags": tags.split(",") if tags else [],
"uploaded_by": str(current_user["_id"]),
"upload_date": datetime.utcnow(),
"is_parent": True,
"chunk_count": len(chunks),
"file_path": pdf_path
}
db.connaissances.insert_one(main_document)
inserted_chunks = 0
chunk_ids = []
for i, chunk in enumerate(chunks):
try:
chunk_text = chunk.page_content
if len(chunk_text) > 5000:
chunk_text = chunk_text[:5000]
embedding = None
if embedding_model:
try:
embedding = embedding_model.embed_query(chunk_text)
except Exception as e:
print(f"Erreur lors de la génération de l'embedding pour le morceau {i+1}: {str(e)}")
chunk_id = ObjectId()
chunk_doc = {
"_id": chunk_id,
"parent_id": doc_id,
"text": chunk_text,
"embedding": embedding,
"title": f"{title or file.filename} - Partie {i+1}",
"tags": tags.split(",") if tags else [],
"chunk_index": i,
"uploaded_by": str(current_user["_id"]),
"upload_date": datetime.utcnow(),
"is_chunk": True
}
db.connaissances.insert_one(chunk_doc)
chunk_ids.append(str(chunk_id))
inserted_chunks += 1
print(f"Morceau {i+1}/{len(chunks)} inséré.")
except Exception as chunk_error:
print(f"Erreur lors du traitement du morceau {i+1}: {str(chunk_error)}")
db.connaissances.update_one(
{"_id": doc_id},
{"$set": {"chunk_ids": chunk_ids, "inserted_chunks": inserted_chunks}}
)
# Vérification
verification = db.connaissances.find_one({"_id": doc_id})
if verification:
print(f"Document parent vérifié et trouvé dans la base de données avec {inserted_chunks} chunks")
return {
"success": True,
"document_id": str(doc_id),
"chunks_total": len(chunks),
"chunks_inserted": inserted_chunks
}
else:
print(f"ERREUR: Document parent non trouvé après insertion")
return {
"success": False,
"error": "Document parent non trouvé après insertion"
}
except Exception as e:
import traceback
print(f"Erreur lors de l'upload du PDF: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail=f"Erreur: {str(e)}")
@router.get("/knowledge")
async def list_documents(current_user: dict = Depends(get_admin_user)):
try:
documents = list(db.connaissances.find().sort("upload_date", -1))
result = []
for doc in documents:
doc_safe = {
"id": str(doc["_id"]),
"title": doc.get("title", "Sans titre"),
"tags": doc.get("tags", []),
"date": doc.get("upload_date").isoformat() if "upload_date" in doc else None,
"text_preview": doc.get("text", "")[:100] + "..." if len(doc.get("text", "")) > 100 else doc.get("text", "")
}
result.append(doc_safe)
return {"documents": result}
except Exception as e:
print(f"Erreur lors de la liste des documents: {str(e)}")
raise HTTPException(status_code=500, detail=f"Erreur: {str(e)}")
@router.delete("/knowledge/{document_id}")
async def delete_document(document_id: str, current_user: dict = Depends(get_admin_user)):
try:
try:
doc_id = ObjectId(document_id)
except Exception:
raise HTTPException(status_code=400, detail="ID de document invalide")
document = db.connaissances.find_one({"_id": doc_id})
if not document:
raise HTTPException(status_code=404, detail="Document non trouvé")
chunks_deleted = 0
if document.get("is_parent", False):
# Supprimer tous les chunks liés à ce parent
chunks_result = db.connaissances.delete_many({"parent_id": doc_id})
chunks_deleted = chunks_result.deleted_count
print(f"Suppression de {chunks_deleted} chunks associés au document {document_id}")
result = db.connaissances.delete_one({"_id": doc_id})
if result.deleted_count == 0:
raise HTTPException(status_code=500, detail="Échec de la suppression du document")
pdf_path = f"/tmp/{document_id}.pdf"
if os.path.exists(pdf_path):
try:
os.remove(pdf_path)
print(f"Fichier supprimé: {pdf_path}")
except Exception as e:
print(f"Erreur lors de la suppression du fichier: {str(e)}")
return {
"success": True,
"message": f"Document supprimé avec succès, ainsi que {chunks_deleted} chunks associés"
}
except HTTPException as he:
raise he
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur lors de la suppression: {str(e)}")