|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
model_checkpoint = 'cointegrated/rubert-tiny-toxicity' |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
|
|
def text2toxicity(text, aggregate=True): |
|
""" Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)""" |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) |
|
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() |
|
if isinstance(text, str): |
|
proba = proba[0] |
|
if aggregate: |
|
return 1 - proba.T[0] * (1 - proba.T[-1]) |
|
return proba |
|
|
|
|