Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
from typing import List | |
from TTS.tts.configs.shared_configs import BaseTTSConfig | |
class NeuralhmmTTSConfig(BaseTTSConfig): | |
""" | |
Define parameters for Neural HMM TTS model. | |
Example: | |
>>> from TTS.tts.configs.overflow_config import OverflowConfig | |
>>> config = OverflowConfig() | |
Args: | |
model (str): | |
Model name used to select the right model class to initilize. Defaults to `Overflow`. | |
run_eval_steps (int): | |
Run evalulation epoch after N steps. If None, waits until training epoch is completed. Defaults to None. | |
save_step (int): | |
Save local checkpoint every save_step steps. Defaults to 500. | |
plot_step (int): | |
Plot training stats on the logger every plot_step steps. Defaults to 1. | |
model_param_stats (bool): | |
Log model parameters stats on the logger dashboard. Defaults to False. | |
force_generate_statistics (bool): | |
Force generate mel normalization statistics. Defaults to False. | |
mel_statistics_parameter_path (str): | |
Path to the mel normalization statistics.If the model doesn't finds a file there it will generate statistics. | |
Defaults to None. | |
num_chars (int): | |
Number of characters used by the model. It must be defined before initializing the model. Defaults to None. | |
state_per_phone (int): | |
Generates N states per phone. Similar, to `add_blank` parameter in GlowTTS but in Overflow it is upsampled by model's encoder. Defaults to 2. | |
encoder_in_out_features (int): | |
Channels of encoder input and character embedding tensors. Defaults to 512. | |
encoder_n_convolutions (int): | |
Number of convolution layers in the encoder. Defaults to 3. | |
out_channels (int): | |
Channels of the final model output. It must match the spectragram size. Defaults to 80. | |
ar_order (int): | |
Autoregressive order of the model. Defaults to 1. In ablations of Neural HMM it was found that more autoregression while giving more variation hurts naturalness of the synthesised audio. | |
sampling_temp (float): | |
Variation added to the sample from the latent space of neural HMM. Defaults to 0.334. | |
deterministic_transition (bool): | |
deterministic duration generation based on duration quantiles as defiend in "S. Ronanki, O. Watts, S. King, and G. E. Henter, “Medianbased generation of synthetic speech durations using a nonparametric approach,” in Proc. SLT, 2016.". Defaults to True. | |
duration_threshold (float): | |
Threshold for duration quantiles. Defaults to 0.55. Tune this to change the speaking rate of the synthesis, where lower values defines a slower speaking rate and higher values defines a faster speaking rate. | |
use_grad_checkpointing (bool): | |
Use gradient checkpointing to save memory. In a multi-GPU setting currently pytorch does not supports gradient checkpoint inside a loop so we will have to turn it off then.Adjust depending on whatever get more batch size either by using a single GPU or multi-GPU. Defaults to True. | |
max_sampling_time (int): | |
Maximum sampling time while synthesising latents from neural HMM. Defaults to 1000. | |
prenet_type (str): | |
`original` or `bn`. `original` sets the default Prenet and `bn` uses Batch Normalization version of the | |
Prenet. Defaults to `original`. | |
prenet_dim (int): | |
Dimension of the Prenet. Defaults to 256. | |
prenet_n_layers (int): | |
Number of layers in the Prenet. Defaults to 2. | |
prenet_dropout (float): | |
Dropout rate of the Prenet. Defaults to 0.5. | |
prenet_dropout_at_inference (bool): | |
Use dropout at inference time. Defaults to False. | |
memory_rnn_dim (int): | |
Dimension of the memory LSTM to process the prenet output. Defaults to 1024. | |
outputnet_size (list[int]): | |
Size of the output network inside the neural HMM. Defaults to [1024]. | |
flat_start_params (dict): | |
Parameters for the flat start initialization of the neural HMM. Defaults to `{"mean": 0.0, "std": 1.0, "transition_p": 0.14}`. | |
It will be recomputed when you pass the dataset. | |
std_floor (float): | |
Floor value for the standard deviation of the neural HMM. Prevents model cheating by putting point mass and getting infinite likelihood at any datapoint. Defaults to 0.01. | |
It is called `variance flooring` in standard HMM literature. | |
optimizer (str): | |
Optimizer to use for training. Defaults to `adam`. | |
optimizer_params (dict): | |
Parameters for the optimizer. Defaults to `{"weight_decay": 1e-6}`. | |
grad_clip (float): | |
Gradient clipping threshold. Defaults to 40_000. | |
lr (float): | |
Learning rate. Defaults to 1e-3. | |
lr_scheduler (str): | |
Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or | |
`TTS.utils.training`. Defaults to `None`. | |
min_seq_len (int): | |
Minimum input sequence length to be used at training. | |
max_seq_len (int): | |
Maximum input sequence length to be used at training. Larger values result in more VRAM usage. | |
""" | |
model: str = "NeuralHMM_TTS" | |
# Training and Checkpoint configs | |
run_eval_steps: int = 100 | |
save_step: int = 500 | |
plot_step: int = 1 | |
model_param_stats: bool = False | |
# data parameters | |
force_generate_statistics: bool = False | |
mel_statistics_parameter_path: str = None | |
# Encoder parameters | |
num_chars: int = None | |
state_per_phone: int = 2 | |
encoder_in_out_features: int = 512 | |
encoder_n_convolutions: int = 3 | |
# HMM parameters | |
out_channels: int = 80 | |
ar_order: int = 1 | |
sampling_temp: float = 0 | |
deterministic_transition: bool = True | |
duration_threshold: float = 0.43 | |
use_grad_checkpointing: bool = True | |
max_sampling_time: int = 1000 | |
## Prenet parameters | |
prenet_type: str = "original" | |
prenet_dim: int = 256 | |
prenet_n_layers: int = 2 | |
prenet_dropout: float = 0.5 | |
prenet_dropout_at_inference: bool = True | |
memory_rnn_dim: int = 1024 | |
## Outputnet parameters | |
outputnet_size: List[int] = field(default_factory=lambda: [1024]) | |
flat_start_params: dict = field(default_factory=lambda: {"mean": 0.0, "std": 1.0, "transition_p": 0.14}) | |
std_floor: float = 0.001 | |
# optimizer parameters | |
optimizer: str = "Adam" | |
optimizer_params: dict = field(default_factory=lambda: {"weight_decay": 1e-6}) | |
grad_clip: float = 40000.0 | |
lr: float = 1e-3 | |
lr_scheduler: str = None | |
# overrides | |
min_text_len: int = 10 | |
max_text_len: int = 500 | |
min_audio_len: int = 512 | |
# testing | |
test_sentences: List[str] = field( | |
default_factory=lambda: [ | |
"Be a voice, not an echo.", | |
] | |
) | |
# Extra needed config | |
r: int = 1 | |
use_d_vector_file: bool = False | |
use_speaker_embedding: bool = False | |
def check_values(self): | |
"""Validate the hyperparameters. | |
Raises: | |
AssertionError: when the parameters network is not defined | |
AssertionError: transition probability is not between 0 and 1 | |
""" | |
assert self.ar_order > 0, "AR order must be greater than 0 it is an autoregressive model." | |
assert ( | |
len(self.outputnet_size) >= 1 | |
), f"Parameter Network must have atleast one layer check the config file for parameter network. Provided: {self.parameternetwork}" | |
assert ( | |
0 < self.flat_start_params["transition_p"] < 1 | |
), f"Transition probability must be between 0 and 1. Provided: {self.flat_start_params['transition_p']}" | |