Spaces:
Runtime error
Runtime error
import os | |
from dataclasses import dataclass | |
import librosa | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from coqpit import Coqpit | |
from TTS.tts.layers.xtts.gpt import GPT | |
from TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder | |
from TTS.tts.layers.xtts.stream_generator import init_stream_support | |
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer, split_sentence | |
from TTS.tts.models.base_tts import BaseTTS | |
from TTS.utils.io import load_fsspec | |
init_stream_support() | |
def wav_to_mel_cloning( | |
wav, | |
mel_norms_file="../experiments/clips_mel_norms.pth", | |
mel_norms=None, | |
device=torch.device("cpu"), | |
n_fft=4096, | |
hop_length=1024, | |
win_length=4096, | |
power=2, | |
normalized=False, | |
sample_rate=22050, | |
f_min=0, | |
f_max=8000, | |
n_mels=80, | |
): | |
""" | |
Convert waveform to mel-spectrogram with hard-coded parameters for cloning. | |
Args: | |
wav (torch.Tensor): Input waveform tensor. | |
mel_norms_file (str): Path to mel-spectrogram normalization file. | |
mel_norms (torch.Tensor): Mel-spectrogram normalization tensor. | |
device (torch.device): Device to use for computation. | |
Returns: | |
torch.Tensor: Mel-spectrogram tensor. | |
""" | |
mel_stft = torchaudio.transforms.MelSpectrogram( | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
power=power, | |
normalized=normalized, | |
sample_rate=sample_rate, | |
f_min=f_min, | |
f_max=f_max, | |
n_mels=n_mels, | |
norm="slaney", | |
).to(device) | |
wav = wav.to(device) | |
mel = mel_stft(wav) | |
mel = torch.log(torch.clamp(mel, min=1e-5)) | |
if mel_norms is None: | |
mel_norms = torch.load(mel_norms_file, map_location=device) | |
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1) | |
return mel | |
def load_audio(audiopath, sampling_rate): | |
# better load setting following: https://github.com/faroit/python_audio_loading_benchmark | |
# torchaudio should chose proper backend to load audio depending on platform | |
audio, lsr = torchaudio.load(audiopath) | |
# stereo to mono if needed | |
if audio.size(0) != 1: | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
if lsr != sampling_rate: | |
audio = torchaudio.functional.resample(audio, lsr, sampling_rate) | |
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. | |
# '10' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. | |
if torch.any(audio > 10) or not torch.any(audio < 0): | |
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") | |
# clip audio invalid values | |
audio.clip_(-1, 1) | |
return audio | |
def pad_or_truncate(t, length): | |
""" | |
Ensure a given tensor t has a specified sequence length by either padding it with zeros or clipping it. | |
Args: | |
t (torch.Tensor): The input tensor to be padded or truncated. | |
length (int): The desired length of the tensor. | |
Returns: | |
torch.Tensor: The padded or truncated tensor. | |
""" | |
tp = t[..., :length] | |
if t.shape[-1] == length: | |
tp = t | |
elif t.shape[-1] < length: | |
tp = F.pad(t, (0, length - t.shape[-1])) | |
return tp | |
class XttsAudioConfig(Coqpit): | |
""" | |
Configuration class for audio-related parameters in the XTTS model. | |
Args: | |
sample_rate (int): The sample rate in which the GPT operates. | |
output_sample_rate (int): The sample rate of the output audio waveform. | |
""" | |
sample_rate: int = 22050 | |
output_sample_rate: int = 24000 | |
class XttsArgs(Coqpit): | |
"""A dataclass to represent XTTS model arguments that define the model structure. | |
Args: | |
gpt_batch_size (int): The size of the auto-regressive batch. | |
enable_redaction (bool, optional): Whether to enable redaction. Defaults to True. | |
kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True. | |
gpt_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None. | |
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None. | |
decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None. | |
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255. | |
For GPT model: | |
gpt_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604. | |
gpt_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402. | |
gpt_max_prompt_tokens (int, optional): The maximum prompt tokens or the autoregressive model. Defaults to 70. | |
gpt_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30. | |
gpt_n_model_channels (int, optional): The model dimension for the autoregressive model. Defaults to 1024. | |
gpt_n_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16. | |
gpt_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255. | |
gpt_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255. | |
gpt_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False. | |
gpt_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False. | |
gpt_code_stride_len (int, optional): The hop_size of dvae and consequently of the gpt output. Defaults to 1024. | |
gpt_use_masking_gt_prompt_approach (bool, optional): If True, it will use ground truth as prompt and it will mask the loss to avoid repetition. Defaults to True. | |
gpt_use_perceiver_resampler (bool, optional): If True, it will use perceiver resampler from flamingo paper - https://arxiv.org/abs/2204.14198. Defaults to False. | |
""" | |
gpt_batch_size: int = 1 | |
enable_redaction: bool = False | |
kv_cache: bool = True | |
gpt_checkpoint: str = None | |
clvp_checkpoint: str = None | |
decoder_checkpoint: str = None | |
num_chars: int = 255 | |
# XTTS GPT Encoder params | |
tokenizer_file: str = "" | |
gpt_max_audio_tokens: int = 605 | |
gpt_max_text_tokens: int = 402 | |
gpt_max_prompt_tokens: int = 70 | |
gpt_layers: int = 30 | |
gpt_n_model_channels: int = 1024 | |
gpt_n_heads: int = 16 | |
gpt_number_text_tokens: int = None | |
gpt_start_text_token: int = None | |
gpt_stop_text_token: int = None | |
gpt_num_audio_tokens: int = 8194 | |
gpt_start_audio_token: int = 8192 | |
gpt_stop_audio_token: int = 8193 | |
gpt_code_stride_len: int = 1024 | |
gpt_use_masking_gt_prompt_approach: bool = True | |
gpt_use_perceiver_resampler: bool = False | |
# HifiGAN Decoder params | |
input_sample_rate: int = 22050 | |
output_sample_rate: int = 24000 | |
output_hop_length: int = 256 | |
decoder_input_dim: int = 1024 | |
d_vector_dim: int = 512 | |
cond_d_vector_in_each_upsampling_layer: bool = True | |
# constants | |
duration_const: int = 102400 | |
class Xtts(BaseTTS): | |
"""ⓍTTS model implementation. | |
❗ Currently it only supports inference. | |
Examples: | |
>>> from TTS.tts.configs.xtts_config import XttsConfig | |
>>> from TTS.tts.models.xtts import Xtts | |
>>> config = XttsConfig() | |
>>> model = Xtts.inif_from_config(config) | |
>>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) | |
""" | |
def __init__(self, config: Coqpit): | |
super().__init__(config, ap=None, tokenizer=None) | |
self.mel_stats_path = None | |
self.config = config | |
self.gpt_checkpoint = self.args.gpt_checkpoint | |
self.decoder_checkpoint = self.args.decoder_checkpoint # TODO: check if this is even needed | |
self.models_dir = config.model_dir | |
self.gpt_batch_size = self.args.gpt_batch_size | |
self.tokenizer = VoiceBpeTokenizer() | |
self.gpt = None | |
self.init_models() | |
self.register_buffer("mel_stats", torch.ones(80)) | |
def init_models(self): | |
"""Initialize the models. We do it here since we need to load the tokenizer first.""" | |
if self.tokenizer.tokenizer is not None: | |
self.args.gpt_number_text_tokens = self.tokenizer.get_number_tokens() | |
self.args.gpt_start_text_token = self.tokenizer.tokenizer.token_to_id("[START]") | |
self.args.gpt_stop_text_token = self.tokenizer.tokenizer.token_to_id("[STOP]") | |
if self.args.gpt_number_text_tokens: | |
self.gpt = GPT( | |
layers=self.args.gpt_layers, | |
model_dim=self.args.gpt_n_model_channels, | |
start_text_token=self.args.gpt_start_text_token, | |
stop_text_token=self.args.gpt_stop_text_token, | |
heads=self.args.gpt_n_heads, | |
max_text_tokens=self.args.gpt_max_text_tokens, | |
max_mel_tokens=self.args.gpt_max_audio_tokens, | |
max_prompt_tokens=self.args.gpt_max_prompt_tokens, | |
number_text_tokens=self.args.gpt_number_text_tokens, | |
num_audio_tokens=self.args.gpt_num_audio_tokens, | |
start_audio_token=self.args.gpt_start_audio_token, | |
stop_audio_token=self.args.gpt_stop_audio_token, | |
use_perceiver_resampler=self.args.gpt_use_perceiver_resampler, | |
code_stride_len=self.args.gpt_code_stride_len, | |
) | |
self.hifigan_decoder = HifiDecoder( | |
input_sample_rate=self.args.input_sample_rate, | |
output_sample_rate=self.args.output_sample_rate, | |
output_hop_length=self.args.output_hop_length, | |
ar_mel_length_compression=self.args.gpt_code_stride_len, | |
decoder_input_dim=self.args.decoder_input_dim, | |
d_vector_dim=self.args.d_vector_dim, | |
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer, | |
) | |
def device(self): | |
return next(self.parameters()).device | |
def get_gpt_cond_latents(self, audio, sr, length: int = 30, chunk_length: int = 6): | |
"""Compute the conditioning latents for the GPT model from the given audio. | |
Args: | |
audio (tensor): audio tensor. | |
sr (int): Sample rate of the audio. | |
length (int): Length of the audio in seconds. If < 0, use the whole audio. Defaults to 30. | |
chunk_length (int): Length of the audio chunks in seconds. When `length == chunk_length`, the whole audio | |
is being used without chunking. It must be < `length`. Defaults to 6. | |
""" | |
if sr != 22050: | |
audio = torchaudio.functional.resample(audio, sr, 22050) | |
if length > 0: | |
audio = audio[:, : 22050 * length] | |
if self.args.gpt_use_perceiver_resampler: | |
style_embs = [] | |
for i in range(0, audio.shape[1], 22050 * chunk_length): | |
audio_chunk = audio[:, i : i + 22050 * chunk_length] | |
mel_chunk = wav_to_mel_cloning( | |
audio_chunk, | |
mel_norms=self.mel_stats.cpu(), | |
n_fft=2048, | |
hop_length=256, | |
win_length=1024, | |
power=2, | |
normalized=False, | |
sample_rate=22050, | |
f_min=0, | |
f_max=8000, | |
n_mels=80, | |
) | |
style_emb = self.gpt.get_style_emb(mel_chunk.to(self.device), None) | |
style_embs.append(style_emb) | |
# mean style embedding | |
cond_latent = torch.stack(style_embs).mean(dim=0) | |
else: | |
mel = wav_to_mel_cloning( | |
audio, | |
mel_norms=self.mel_stats.cpu(), | |
n_fft=4096, | |
hop_length=1024, | |
win_length=4096, | |
power=2, | |
normalized=False, | |
sample_rate=22050, | |
f_min=0, | |
f_max=8000, | |
n_mels=80, | |
) | |
cond_latent = self.gpt.get_style_emb(mel.to(self.device)) | |
return cond_latent.transpose(1, 2) | |
def get_speaker_embedding(self, audio, sr): | |
audio_16k = torchaudio.functional.resample(audio, sr, 16000) | |
return ( | |
self.hifigan_decoder.speaker_encoder.forward(audio_16k.to(self.device), l2_norm=True) | |
.unsqueeze(-1) | |
.to(self.device) | |
) | |
def get_conditioning_latents( | |
self, | |
audio_path, | |
max_ref_length=30, | |
gpt_cond_len=6, | |
gpt_cond_chunk_len=6, | |
librosa_trim_db=None, | |
sound_norm_refs=False, | |
load_sr=22050, | |
): | |
"""Get the conditioning latents for the GPT model from the given audio. | |
Args: | |
audio_path (str or List[str]): Path to reference audio file(s). | |
max_ref_length (int): Maximum length of each reference audio in seconds. Defaults to 30. | |
gpt_cond_len (int): Length of the audio used for gpt latents. Defaults to 6. | |
gpt_cond_chunk_len (int): Chunk length used for gpt latents. It must be <= gpt_conf_len. Defaults to 6. | |
librosa_trim_db (int, optional): Trim the audio using this value. If None, not trimming. Defaults to None. | |
sound_norm_refs (bool, optional): Whether to normalize the audio. Defaults to False. | |
load_sr (int, optional): Sample rate to load the audio. Defaults to 24000. | |
""" | |
# deal with multiples references | |
if not isinstance(audio_path, list): | |
audio_paths = [audio_path] | |
else: | |
audio_paths = audio_path | |
speaker_embeddings = [] | |
audios = [] | |
speaker_embedding = None | |
for file_path in audio_paths: | |
audio = load_audio(file_path, load_sr) | |
audio = audio[:, : load_sr * max_ref_length].to(self.device) | |
if sound_norm_refs: | |
audio = (audio / torch.abs(audio).max()) * 0.75 | |
if librosa_trim_db is not None: | |
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0] | |
# compute latents for the decoder | |
speaker_embedding = self.get_speaker_embedding(audio, load_sr) | |
speaker_embeddings.append(speaker_embedding) | |
audios.append(audio) | |
# merge all the audios and compute the latents for the gpt | |
full_audio = torch.cat(audios, dim=-1) | |
gpt_cond_latents = self.get_gpt_cond_latents( | |
full_audio, load_sr, length=gpt_cond_len, chunk_length=gpt_cond_chunk_len | |
) # [1, 1024, T] | |
if speaker_embeddings: | |
speaker_embedding = torch.stack(speaker_embeddings) | |
speaker_embedding = speaker_embedding.mean(dim=0) | |
return gpt_cond_latents, speaker_embedding | |
def synthesize(self, text, config, speaker_wav, language, **kwargs): | |
"""Synthesize speech with the given input text. | |
Args: | |
text (str): Input text. | |
config (XttsConfig): Config with inference parameters. | |
speaker_wav (list): List of paths to the speaker audio files to be used for cloning. | |
language (str): Language ID of the speaker. | |
**kwargs: Inference settings. See `inference()`. | |
Returns: | |
A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, | |
`text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` | |
as latents used at inference. | |
""" | |
return self.inference_with_config(text, config, ref_audio_path=speaker_wav, language=language, **kwargs) | |
def inference_with_config(self, text, config, ref_audio_path, language, **kwargs): | |
""" | |
inference with config | |
""" | |
assert ( | |
"zh-cn" if language == "zh" else language in self.config.languages | |
), f" ❗ Language {language} is not supported. Supported languages are {self.config.languages}" | |
# Use generally found best tuning knobs for generation. | |
settings = { | |
"temperature": config.temperature, | |
"length_penalty": config.length_penalty, | |
"repetition_penalty": config.repetition_penalty, | |
"top_k": config.top_k, | |
"top_p": config.top_p, | |
"gpt_cond_len": config.gpt_cond_len, | |
"gpt_cond_chunk_len": config.gpt_cond_chunk_len, | |
"max_ref_len": config.max_ref_len, | |
"sound_norm_refs": config.sound_norm_refs, | |
} | |
settings.update(kwargs) # allow overriding of preset settings with kwargs | |
return self.full_inference(text, ref_audio_path, language, **settings) | |
def full_inference( | |
self, | |
text, | |
ref_audio_path, | |
language, | |
# GPT inference | |
temperature=0.75, | |
length_penalty=1.0, | |
repetition_penalty=10.0, | |
top_k=50, | |
top_p=0.85, | |
do_sample=True, | |
# Cloning | |
gpt_cond_len=30, | |
gpt_cond_chunk_len=6, | |
max_ref_len=10, | |
sound_norm_refs=False, | |
**hf_generate_kwargs, | |
): | |
""" | |
This function produces an audio clip of the given text being spoken with the given reference voice. | |
Args: | |
text: (str) Text to be spoken. | |
ref_audio_path: (str) Path to a reference audio file to be used for cloning. This audio file should be >3 | |
seconds long. | |
language: (str) Language of the voice to be generated. | |
temperature: (float) The softmax temperature of the autoregressive model. Defaults to 0.65. | |
length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the | |
model to produce more terse outputs. Defaults to 1.0. | |
repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during | |
decoding. Can be used to reduce the incidence of long silences or "uhhhhhhs", etc. Defaults to 2.0. | |
top_k: (int) K value used in top-k sampling. [0,inf]. Lower values mean the decoder produces more "likely" | |
(aka boring) outputs. Defaults to 50. | |
top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" | |
(aka boring) outputs. Defaults to 0.8. | |
gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used | |
else the first `gpt_cond_len` secs is used. Defaults to 30 seconds. | |
gpt_cond_chunk_len: (int) Chunk length used for cloning. It must be <= `gpt_cond_len`. | |
If gpt_cond_len == gpt_cond_chunk_len, no chunking. Defaults to 6 seconds. | |
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive | |
transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation | |
here: https://huggingface.co/docs/transformers/internal/generation_utils | |
Returns: | |
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. | |
Sample rate is 24kHz. | |
""" | |
(gpt_cond_latent, speaker_embedding) = self.get_conditioning_latents( | |
audio_path=ref_audio_path, | |
gpt_cond_len=gpt_cond_len, | |
gpt_cond_chunk_len=gpt_cond_chunk_len, | |
max_ref_length=max_ref_len, | |
sound_norm_refs=sound_norm_refs, | |
) | |
return self.inference( | |
text, | |
language, | |
gpt_cond_latent, | |
speaker_embedding, | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
top_k=top_k, | |
top_p=top_p, | |
do_sample=do_sample, | |
**hf_generate_kwargs, | |
) | |
def inference( | |
self, | |
text, | |
language, | |
gpt_cond_latent, | |
speaker_embedding, | |
# GPT inference | |
temperature=0.75, | |
length_penalty=1.0, | |
repetition_penalty=10.0, | |
top_k=50, | |
top_p=0.85, | |
do_sample=True, | |
num_beams=1, | |
speed=1.0, | |
enable_text_splitting=False, | |
**hf_generate_kwargs, | |
): | |
language = language.split("-")[0] # remove the country code | |
length_scale = 1.0 / max(speed, 0.05) | |
if enable_text_splitting: | |
text = split_sentence(text, language, self.tokenizer.char_limits[language]) | |
else: | |
text = [text] | |
wavs = [] | |
gpt_latents_list = [] | |
for sent in text: | |
sent = sent.strip().lower() | |
text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device) | |
assert ( | |
text_tokens.shape[-1] < self.args.gpt_max_text_tokens | |
), " ❗ XTTS can only generate text with a maximum of 400 tokens." | |
with torch.no_grad(): | |
gpt_codes = self.gpt.generate( | |
cond_latents=gpt_cond_latent, | |
text_inputs=text_tokens, | |
input_tokens=None, | |
do_sample=do_sample, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_return_sequences=self.gpt_batch_size, | |
num_beams=num_beams, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
output_attentions=False, | |
**hf_generate_kwargs, | |
) | |
expected_output_len = torch.tensor( | |
[gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device | |
) | |
text_len = torch.tensor([text_tokens.shape[-1]], device=self.device) | |
gpt_latents = self.gpt( | |
text_tokens, | |
text_len, | |
gpt_codes, | |
expected_output_len, | |
cond_latents=gpt_cond_latent, | |
return_attentions=False, | |
return_latent=True, | |
) | |
if length_scale != 1.0: | |
gpt_latents = F.interpolate( | |
gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear" | |
).transpose(1, 2) | |
gpt_latents_list.append(gpt_latents.cpu()) | |
wavs.append(self.hifigan_decoder(gpt_latents, g=speaker_embedding).cpu().squeeze()) | |
return { | |
"wav": torch.cat(wavs, dim=0).numpy(), | |
"gpt_latents": torch.cat(gpt_latents_list, dim=1).numpy(), | |
"speaker_embedding": speaker_embedding, | |
} | |
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len): | |
"""Handle chunk formatting in streaming mode""" | |
wav_chunk = wav_gen[:-overlap_len] | |
if wav_gen_prev is not None: | |
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len] | |
if wav_overlap is not None: | |
# cross fade the overlap section | |
if overlap_len > len(wav_chunk): | |
# wav_chunk is smaller than overlap_len, pass on last wav_gen | |
if wav_gen_prev is not None: | |
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) :] | |
else: | |
# not expecting will hit here as problem happens on last chunk | |
wav_chunk = wav_gen[-overlap_len:] | |
return wav_chunk, wav_gen, None | |
else: | |
crossfade_wav = wav_chunk[:overlap_len] | |
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device) | |
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device) | |
wav_chunk[:overlap_len] += crossfade_wav | |
wav_overlap = wav_gen[-overlap_len:] | |
wav_gen_prev = wav_gen | |
return wav_chunk, wav_gen_prev, wav_overlap | |
def inference_stream( | |
self, | |
text, | |
language, | |
gpt_cond_latent, | |
speaker_embedding, | |
# Streaming | |
stream_chunk_size=20, | |
overlap_wav_len=1024, | |
# GPT inference | |
temperature=0.75, | |
length_penalty=1.0, | |
repetition_penalty=10.0, | |
top_k=50, | |
top_p=0.85, | |
do_sample=True, | |
speed=1.0, | |
enable_text_splitting=False, | |
**hf_generate_kwargs, | |
): | |
language = language.split("-")[0] # remove the country code | |
length_scale = 1.0 / max(speed, 0.05) | |
if enable_text_splitting: | |
text = split_sentence(text, language, self.tokenizer.char_limits[language]) | |
else: | |
text = [text] | |
for sent in text: | |
sent = sent.strip().lower() | |
text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device) | |
assert ( | |
text_tokens.shape[-1] < self.args.gpt_max_text_tokens | |
), " ❗ XTTS can only generate text with a maximum of 400 tokens." | |
fake_inputs = self.gpt.compute_embeddings( | |
gpt_cond_latent.to(self.device), | |
text_tokens, | |
) | |
gpt_generator = self.gpt.get_generator( | |
fake_inputs=fake_inputs, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
do_sample=do_sample, | |
num_beams=1, | |
num_return_sequences=1, | |
length_penalty=float(length_penalty), | |
repetition_penalty=float(repetition_penalty), | |
output_attentions=False, | |
output_hidden_states=True, | |
**hf_generate_kwargs, | |
) | |
last_tokens = [] | |
all_latents = [] | |
wav_gen_prev = None | |
wav_overlap = None | |
is_end = False | |
while not is_end: | |
try: | |
x, latent = next(gpt_generator) | |
last_tokens += [x] | |
all_latents += [latent] | |
except StopIteration: | |
is_end = True | |
if is_end or (stream_chunk_size > 0 and len(last_tokens) >= stream_chunk_size): | |
gpt_latents = torch.cat(all_latents, dim=0)[None, :] | |
if length_scale != 1.0: | |
gpt_latents = F.interpolate( | |
gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear" | |
).transpose(1, 2) | |
wav_gen = self.hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device)) | |
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks( | |
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len | |
) | |
last_tokens = [] | |
yield wav_chunk | |
def forward(self): | |
raise NotImplementedError( | |
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training" | |
) | |
def eval_step(self): | |
raise NotImplementedError( | |
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training" | |
) | |
def init_from_config(config: "XttsConfig", **kwargs): # pylint: disable=unused-argument | |
return Xtts(config) | |
def eval(self): # pylint: disable=redefined-builtin | |
"""Sets the model to evaluation mode. Overrides the default eval() method to also set the GPT model to eval mode.""" | |
self.gpt.init_gpt_for_inference() | |
super().eval() | |
def get_compatible_checkpoint_state_dict(self, model_path): | |
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"] | |
# remove xtts gpt trainer extra keys | |
ignore_keys = ["torch_mel_spectrogram_style_encoder", "torch_mel_spectrogram_dvae", "dvae"] | |
for key in list(checkpoint.keys()): | |
# check if it is from the coqui Trainer if so convert it | |
if key.startswith("xtts."): | |
new_key = key.replace("xtts.", "") | |
checkpoint[new_key] = checkpoint[key] | |
del checkpoint[key] | |
key = new_key | |
# remove unused keys | |
if key.split(".")[0] in ignore_keys: | |
del checkpoint[key] | |
return checkpoint | |
def load_checkpoint( | |
self, | |
config, | |
checkpoint_dir=None, | |
checkpoint_path=None, | |
vocab_path=None, | |
eval=True, | |
strict=True, | |
use_deepspeed=False, | |
): | |
""" | |
Loads a checkpoint from disk and initializes the model's state and tokenizer. | |
Args: | |
config (dict): The configuration dictionary for the model. | |
checkpoint_dir (str, optional): The directory where the checkpoint is stored. Defaults to None. | |
checkpoint_path (str, optional): The path to the checkpoint file. Defaults to None. | |
vocab_path (str, optional): The path to the vocabulary file. Defaults to None. | |
eval (bool, optional): Whether to set the model to evaluation mode. Defaults to True. | |
strict (bool, optional): Whether to strictly enforce that the keys in the checkpoint match the keys in the model. Defaults to True. | |
Returns: | |
None | |
""" | |
model_path = checkpoint_path or os.path.join(checkpoint_dir, "model.pth") | |
vocab_path = vocab_path or os.path.join(checkpoint_dir, "vocab.json") | |
if os.path.exists(vocab_path): | |
self.tokenizer = VoiceBpeTokenizer(vocab_file=vocab_path) | |
self.init_models() | |
checkpoint = self.get_compatible_checkpoint_state_dict(model_path) | |
# deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not | |
try: | |
self.load_state_dict(checkpoint, strict=strict) | |
except: | |
if eval: | |
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache) | |
self.load_state_dict(checkpoint, strict=strict) | |
if eval: | |
self.hifigan_decoder.eval() | |
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=use_deepspeed) | |
self.gpt.eval() | |
def train_step(self): | |
raise NotImplementedError( | |
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training" | |
) | |