Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from . import commons | |
import logging | |
logger = logging.getLogger(__name__) | |
class LayerNorm(nn.Module): | |
def __init__(self, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(channels)) | |
self.beta = nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
x = x.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
return x.transpose(1, -1) | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size=1, | |
p_dropout=0.0, | |
window_size=4, | |
isflow=True, | |
**kwargs | |
): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.window_size = window_size | |
# if isflow: | |
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1) | |
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1) | |
# self.cond_layer = weight_norm(cond_layer, name='weight') | |
# self.gin_channels = 256 | |
self.cond_layer_idx = self.n_layers | |
if "gin_channels" in kwargs: | |
self.gin_channels = kwargs["gin_channels"] | |
if self.gin_channels != 0: | |
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels) | |
# vits2 says 3rd block, so idx is 2 by default | |
self.cond_layer_idx = ( | |
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2 | |
) | |
# logging.debug(self.gin_channels, self.cond_layer_idx) | |
assert ( | |
self.cond_layer_idx < self.n_layers | |
), "cond_layer_idx should be less than n_layers" | |
self.drop = nn.Dropout(p_dropout) | |
self.attn_layers = nn.ModuleList() | |
self.norm_layers_1 = nn.ModuleList() | |
self.ffn_layers = nn.ModuleList() | |
self.norm_layers_2 = nn.ModuleList() | |
for i in range(self.n_layers): | |
self.attn_layers.append( | |
MultiHeadAttention( | |
hidden_channels, | |
hidden_channels, | |
n_heads, | |
p_dropout=p_dropout, | |
window_size=window_size, | |
) | |
) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append( | |
FFN( | |
hidden_channels, | |
hidden_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout=p_dropout, | |
) | |
) | |
self.norm_layers_2.append(LayerNorm(hidden_channels)) | |
def forward(self, x, x_mask, g=None): | |
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
x = x * x_mask | |
for i in range(self.n_layers): | |
if i == self.cond_layer_idx and g is not None: | |
g = self.spk_emb_linear(g.transpose(1, 2)) | |
g = g.transpose(1, 2) | |
x = x + g | |
x = x * x_mask | |
y = self.attn_layers[i](x, x, attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size=1, | |
p_dropout=0.0, | |
proximal_bias=False, | |
proximal_init=True, | |
**kwargs | |
): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.proximal_bias = proximal_bias | |
self.proximal_init = proximal_init | |
self.drop = nn.Dropout(p_dropout) | |
self.self_attn_layers = nn.ModuleList() | |
self.norm_layers_0 = nn.ModuleList() | |
self.encdec_attn_layers = nn.ModuleList() | |
self.norm_layers_1 = nn.ModuleList() | |
self.ffn_layers = nn.ModuleList() | |
self.norm_layers_2 = nn.ModuleList() | |
for i in range(self.n_layers): | |
self.self_attn_layers.append( | |
MultiHeadAttention( | |
hidden_channels, | |
hidden_channels, | |
n_heads, | |
p_dropout=p_dropout, | |
proximal_bias=proximal_bias, | |
proximal_init=proximal_init, | |
) | |
) | |
self.norm_layers_0.append(LayerNorm(hidden_channels)) | |
self.encdec_attn_layers.append( | |
MultiHeadAttention( | |
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout | |
) | |
) | |
self.norm_layers_1.append(LayerNorm(hidden_channels)) | |
self.ffn_layers.append( | |
FFN( | |
hidden_channels, | |
hidden_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout=p_dropout, | |
causal=True, | |
) | |
) | |
self.norm_layers_2.append(LayerNorm(hidden_channels)) | |
def forward(self, x, x_mask, h, h_mask): | |
""" | |
x: decoder input | |
h: encoder output | |
""" | |
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to( | |
device=x.device, dtype=x.dtype | |
) | |
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | |
x = x * x_mask | |
for i in range(self.n_layers): | |
y = self.self_attn_layers[i](x, x, self_attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_0[i](x + y) | |
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) | |
y = self.drop(y) | |
x = self.norm_layers_1[i](x + y) | |
y = self.ffn_layers[i](x, x_mask) | |
y = self.drop(y) | |
x = self.norm_layers_2[i](x + y) | |
x = x * x_mask | |
return x | |
class MultiHeadAttention(nn.Module): | |
def __init__( | |
self, | |
channels, | |
out_channels, | |
n_heads, | |
p_dropout=0.0, | |
window_size=None, | |
heads_share=True, | |
block_length=None, | |
proximal_bias=False, | |
proximal_init=False, | |
): | |
super().__init__() | |
assert channels % n_heads == 0 | |
self.channels = channels | |
self.out_channels = out_channels | |
self.n_heads = n_heads | |
self.p_dropout = p_dropout | |
self.window_size = window_size | |
self.heads_share = heads_share | |
self.block_length = block_length | |
self.proximal_bias = proximal_bias | |
self.proximal_init = proximal_init | |
self.attn = None | |
self.k_channels = channels // n_heads | |
self.conv_q = nn.Conv1d(channels, channels, 1) | |
self.conv_k = nn.Conv1d(channels, channels, 1) | |
self.conv_v = nn.Conv1d(channels, channels, 1) | |
self.conv_o = nn.Conv1d(channels, out_channels, 1) | |
self.drop = nn.Dropout(p_dropout) | |
if window_size is not None: | |
n_heads_rel = 1 if heads_share else n_heads | |
rel_stddev = self.k_channels**-0.5 | |
self.emb_rel_k = nn.Parameter( | |
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) | |
* rel_stddev | |
) | |
self.emb_rel_v = nn.Parameter( | |
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) | |
* rel_stddev | |
) | |
nn.init.xavier_uniform_(self.conv_q.weight) | |
nn.init.xavier_uniform_(self.conv_k.weight) | |
nn.init.xavier_uniform_(self.conv_v.weight) | |
if proximal_init: | |
with torch.no_grad(): | |
self.conv_k.weight.copy_(self.conv_q.weight) | |
self.conv_k.bias.copy_(self.conv_q.bias) | |
def forward(self, x, c, attn_mask=None): | |
q = self.conv_q(x) | |
k = self.conv_k(c) | |
v = self.conv_v(c) | |
x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
x = self.conv_o(x) | |
return x | |
def attention(self, query, key, value, mask=None): | |
# reshape [b, d, t] -> [b, n_h, t, d_k] | |
b, d, t_s, t_t = (*key.size(), query.size(2)) | |
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) | |
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) | |
if self.window_size is not None: | |
assert ( | |
t_s == t_t | |
), "Relative attention is only available for self-attention." | |
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) | |
rel_logits = self._matmul_with_relative_keys( | |
query / math.sqrt(self.k_channels), key_relative_embeddings | |
) | |
scores_local = self._relative_position_to_absolute_position(rel_logits) | |
scores = scores + scores_local | |
if self.proximal_bias: | |
assert t_s == t_t, "Proximal bias is only available for self-attention." | |
scores = scores + self._attention_bias_proximal(t_s).to( | |
device=scores.device, dtype=scores.dtype | |
) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, -1e4) | |
if self.block_length is not None: | |
assert ( | |
t_s == t_t | |
), "Local attention is only available for self-attention." | |
block_mask = ( | |
torch.ones_like(scores) | |
.triu(-self.block_length) | |
.tril(self.block_length) | |
) | |
scores = scores.masked_fill(block_mask == 0, -1e4) | |
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] | |
p_attn = self.drop(p_attn) | |
output = torch.matmul(p_attn, value) | |
if self.window_size is not None: | |
relative_weights = self._absolute_position_to_relative_position(p_attn) | |
value_relative_embeddings = self._get_relative_embeddings( | |
self.emb_rel_v, t_s | |
) | |
output = output + self._matmul_with_relative_values( | |
relative_weights, value_relative_embeddings | |
) | |
output = ( | |
output.transpose(2, 3).contiguous().view(b, d, t_t) | |
) # [b, n_h, t_t, d_k] -> [b, d, t_t] | |
return output, p_attn | |
def _matmul_with_relative_values(self, x, y): | |
""" | |
x: [b, h, l, m] | |
y: [h or 1, m, d] | |
ret: [b, h, l, d] | |
""" | |
ret = torch.matmul(x, y.unsqueeze(0)) | |
return ret | |
def _matmul_with_relative_keys(self, x, y): | |
""" | |
x: [b, h, l, d] | |
y: [h or 1, m, d] | |
ret: [b, h, l, m] | |
""" | |
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) | |
return ret | |
def _get_relative_embeddings(self, relative_embeddings, length): | |
2 * self.window_size + 1 | |
# Pad first before slice to avoid using cond ops. | |
pad_length = max(length - (self.window_size + 1), 0) | |
slice_start_position = max((self.window_size + 1) - length, 0) | |
slice_end_position = slice_start_position + 2 * length - 1 | |
if pad_length > 0: | |
padded_relative_embeddings = F.pad( | |
relative_embeddings, | |
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), | |
) | |
else: | |
padded_relative_embeddings = relative_embeddings | |
used_relative_embeddings = padded_relative_embeddings[ | |
:, slice_start_position:slice_end_position | |
] | |
return used_relative_embeddings | |
def _relative_position_to_absolute_position(self, x): | |
""" | |
x: [b, h, l, 2*l-1] | |
ret: [b, h, l, l] | |
""" | |
batch, heads, length, _ = x.size() | |
# Concat columns of pad to shift from relative to absolute indexing. | |
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) | |
# Concat extra elements so to add up to shape (len+1, 2*len-1). | |
x_flat = x.view([batch, heads, length * 2 * length]) | |
x_flat = F.pad( | |
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) | |
) | |
# Reshape and slice out the padded elements. | |
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[ | |
:, :, :length, length - 1 : | |
] | |
return x_final | |
def _absolute_position_to_relative_position(self, x): | |
""" | |
x: [b, h, l, l] | |
ret: [b, h, l, 2*l-1] | |
""" | |
batch, heads, length, _ = x.size() | |
# pad along column | |
x = F.pad( | |
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) | |
) | |
x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) | |
# add 0's in the beginning that will skew the elements after reshape | |
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) | |
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] | |
return x_final | |
def _attention_bias_proximal(self, length): | |
"""Bias for self-attention to encourage attention to close positions. | |
Args: | |
length: an integer scalar. | |
Returns: | |
a Tensor with shape [1, 1, length, length] | |
""" | |
r = torch.arange(length, dtype=torch.float32) | |
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | |
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) | |
class FFN(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout=0.0, | |
activation=None, | |
causal=False, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.activation = activation | |
self.causal = causal | |
if causal: | |
self.padding = self._causal_padding | |
else: | |
self.padding = self._same_padding | |
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) | |
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) | |
self.drop = nn.Dropout(p_dropout) | |
def forward(self, x, x_mask): | |
x = self.conv_1(self.padding(x * x_mask)) | |
if self.activation == "gelu": | |
x = x * torch.sigmoid(1.702 * x) | |
else: | |
x = torch.relu(x) | |
x = self.drop(x) | |
x = self.conv_2(self.padding(x * x_mask)) | |
return x * x_mask | |
def _causal_padding(self, x): | |
if self.kernel_size == 1: | |
return x | |
pad_l = self.kernel_size - 1 | |
pad_r = 0 | |
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
x = F.pad(x, commons.convert_pad_shape(padding)) | |
return x | |
def _same_padding(self, x): | |
if self.kernel_size == 1: | |
return x | |
pad_l = (self.kernel_size - 1) // 2 | |
pad_r = self.kernel_size // 2 | |
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | |
x = F.pad(x, commons.convert_pad_shape(padding)) | |
return x | |