Spaces:
Sleeping
Sleeping
import os | |
import yaml | |
import torch | |
from transformers import AlbertConfig, AlbertModel | |
class CustomAlbert(AlbertModel): | |
def forward(self, *args, **kwargs): | |
# Call the original forward method | |
outputs = super().forward(*args, **kwargs) | |
# Only return the last_hidden_state | |
return outputs.last_hidden_state | |
def load_plbert(log_dir): | |
config_path = os.path.join(log_dir, "config.yml") | |
plbert_config = yaml.safe_load(open(config_path)) | |
albert_base_configuration = AlbertConfig(**plbert_config["model_params"]) | |
bert = CustomAlbert(albert_base_configuration) | |
files = os.listdir(log_dir) | |
ckpts = [] | |
for f in os.listdir(log_dir): | |
if f.startswith("step_"): | |
ckpts.append(f) | |
iters = [ | |
int(f.split("_")[-1].split(".")[0]) | |
for f in ckpts | |
if os.path.isfile(os.path.join(log_dir, f)) | |
] | |
iters = sorted(iters)[-1] | |
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location="cpu") | |
state_dict = checkpoint["net"] | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
if name.startswith("encoder."): | |
name = name[8:] # remove `encoder.` | |
new_state_dict[name] = v | |
del new_state_dict["embeddings.position_ids"] | |
bert.load_state_dict(new_state_dict, strict=False) | |
return bert | |