jojogan / app.py
sztanki's picture
Remove key
8b9a7d7
raw
history blame
3.84 kB
import os
from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *
from copy import deepcopy
import imageio
import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download
device= 'cpu'
model_path_e = hf_hub_download(repo_id="akhaliq/JoJoGAN_e4e_ffhq_encode", filename="e4e_ffhq_encode.pt")
ckpt = torch.load(model_path_e, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path_e
opts= Namespace(**opts)
net = pSp(opts, device).eval().to(device)
@ torch.no_grad()
def projection(img, name, device='cuda'):
transform = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(img).unsqueeze(0).to(device)
images, w_plus = net(img, randomize_noise=False, return_latents=True)
result_file = {}
result_file['latent'] = w_plus[0]
torch.save(result_file, name)
return w_plus[0]
device = 'cpu'
latent_dim = 512
model_path_s = hf_hub_download(repo_id="akhaliq/jojogan-stylegan2-ffhq-config-f", filename="stylegan2-ffhq-config-f.pt")
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)
#MODELS
generatorzombie = deepcopy(original_generator)
generatorjojo = deepcopy(original_generator)
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
#ZOMBIE
modelzombie = hf_hub_download(repo_id="Awesimo/jojogan-zombie", filename="zombie.pt")
ckptzombie = torch.load(modelzombie, map_location=lambda storage, loc: storage)
#generatorzombie.load_state_dict(ckptzombie["g"], strict=False)
generatorzombie.load_state_dict(ckptzombie, strict=False)
#JOJO
modeljojo = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_preserve_color.pt")
ckptjojo = torch.load(modeljojo, map_location=lambda storage, loc: storage)
generatorjojo.load_state_dict(ckptjojo["g"], strict=False)
def inference(img, model):
img.save('out.jpg')
aligned_face = align_face('out.jpg')
my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
if model == 'Zombie':
with torch.no_grad():
my_sample = generatorzombie(my_w, input_is_latent=True)
elif model == 'JoJo':
with torch.no_grad():
my_sample = generatorjojo(my_w, input_is_latent=True)
else:
with torch.no_grad():
my_sample = generatorzombie(my_w, input_is_latent=True)
npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
imageio.imwrite('filename.jpeg', npimage)
return 'filename.jpeg'
title = "JoJoGAN Test πŸ€–"
examples=[['assets/samples/image01.jpg','Zombie'],['assets/samples/image02.jpg','JoJo'],['assets/samples/image03.jpg','Zombie'],['assets/samples/image04.jpg','JoJo']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['Zombie', 'JoJo'], type="value", default='Zombie', label="Model")], gr.outputs.Image(type="file"),title=title,allow_flagging=False,examples=examples,allow_screenshot=False).launch()