blurryAI / app.py
Autopixel's picture
Duplicate from ysr/blurryAI
9e3b1a4
raw
history blame
4.47 kB
from torchvision.models.detection import maskrcnn_resnet50_fpn_v2, MaskRCNN_ResNet50_FPN_V2_Weights
import torch
import torch.nn as nn
import torchvision.transforms as T
from torchvision.utils import draw_segmentation_masks, draw_bounding_boxes
import random
import gradio as gr
import numpy as np
output_dict = {} # this dict is shared between segment and blur_background functions
pred_label_unq = []
def random_color_gen(n):
return [tuple(random.randint(0,255) for i in range(3)) for i in range(n)]
def segment(input_image):
# prepare image for display
display_img = torch.tensor(np.asarray(input_image)).unsqueeze(0)
display_img = display_img.permute(0, 3, 1, 2).squeeze(0)
# Prepare the RCNN model
weights = MaskRCNN_ResNet50_FPN_V2_Weights.COCO_V1
transforms = weights.transforms()
model = maskrcnn_resnet50_fpn_v2(weights=weights)
model = model.eval();
# Prepare the input image
input_tensor = transforms(input_image).unsqueeze(0)
# Get the predictions
output = model(input_tensor)[0] # idx 0 to get the first dictionary of the returned list
# Filter by threshold
score_threshold = 0.75
mask_threshold = 0.5
masks = output['masks'][output['scores'] > score_threshold] > mask_threshold;
boxes = output['boxes'][output['scores'] > score_threshold]
masks = masks.squeeze(1)
boxes = boxes.squeeze(1)
pred_labels = [weights.meta["categories"][label] for label in output['labels'][output['scores'] > score_threshold]]
n_pred = len(pred_labels)
# give unique id to all the predicitons
pred_label_unq = [pred_labels[i] + str(pred_labels[:i].count(pred_labels[i]) + 1) for i in range(n_pred)]
colors = random_color_gen(n_pred)
# Prepare output_dict
for i in range(n_pred):
output_dict[pred_label_unq[i]] = {'mask': masks[i].tolist(), 'color': colors[i]}
masked_img = draw_segmentation_masks(display_img, masks, alpha=0.9, colors=colors)
bounding_box_img = draw_bounding_boxes(masked_img, boxes, labels=pred_label_unq, colors='white')
masked_img = T.ToPILImage()(masked_img)
bounding_box_img = T.ToPILImage()(bounding_box_img)
return bounding_box_img;
def blur_object(input_image, label_name):
label_names = label_name.split(' ')
input_tensor = T.ToTensor()(input_image).unsqueeze(0)
blur = T.GaussianBlur(15, 20)
blurred_tensor = blur(input_tensor)
final_img = input_tensor
for name in label_names:
mask = output_dict[name.strip()]['mask']
mask = torch.tensor(mask).unsqueeze(0)
final_img[:, :, mask.squeeze(0)] = blurred_tensor[:, :, mask.squeeze(0)];
final_img = T.ToPILImage()(final_img.squeeze(0))
return final_img;
def blur_background(input_image, label_name):
label_names = label_name.split(' ')
input_tensor = T.ToTensor()(input_image).unsqueeze(0)
blur = T.GaussianBlur(15, 20)
blurred_tensor = blur(input_tensor)
final_img = blurred_tensor
for name in label_names:
mask = output_dict[name.strip()]['mask']
mask = torch.tensor(mask).unsqueeze(0)
final_img[:, :, mask.squeeze(0)] = input_tensor[:, :, mask.squeeze(0)];
final_img = T.ToPILImage()(final_img.squeeze(0))
return final_img;
############################
""" User Interface """
############################
with gr.Blocks() as app:
gr.Markdown("# Blur an objects background with AI")
gr.Markdown("First segment the image and create bounding boxes")
with gr.Column():
input_image = gr.Image(type='pil')
b1 = gr.Button("Segment Image")
with gr.Row():
bounding_box_image = gr.Image();
gr.Markdown("Now choose a label (eg: person1) from the above image of your desired object and input it below")
gr.Markdown("You can also input multiple labels separated by spaces (eg: person1 car1 handbag1)")
with gr.Column():
label_name = gr.Textbox()
with gr.Row():
b2 = gr.Button("Blur Backbround")
b3 = gr.Button("Blur Object")
result = gr.Image()
b1.click(segment, inputs=input_image, outputs=bounding_box_image)
b2.click(blur_background, inputs=[input_image, label_name], outputs=result)
b3.click(blur_object, inputs=[input_image, label_name], outputs=result)
app.launch(debug=True)