jeffrey
Raise an error when there is no model input at qa creation
7420a95
raw
history blame
11.4 kB
import os
import tempfile
from typing import List, Callable
import gradio as gr
import pandas as pd
from autorag.data.parse import langchain_parse
from autorag.data.parse.base import _add_last_modified_datetime
from autorag.data.parse.llamaparse import llama_parse
from autorag.data.qa.schema import Raw
from autorag.utils import result_to_dataframe
from llama_index.llms.openai import OpenAI
from src.create import default_create, fast_create, advanced_create
from src.util import on_submit_openai_key, on_submit_llama_cloud_key, on_submit_upstage_key
@result_to_dataframe(["texts", "path", "page", "last_modified_datetime"])
def original_parse(fn: Callable, **kwargs):
result = fn(**kwargs)
result = _add_last_modified_datetime(result)
return result
def change_lang_choice(lang: str) -> str:
lang_dict = {
"English": "en",
"한국어": "ko",
"日本語": "ja"
}
return lang_dict[lang]
def change_visible_status_api_key(parse_method: str):
if parse_method == "llama-parse":
return gr.update(visible=True), gr.update(visible=False)
elif parse_method == "upstage🇰🇷":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
def run_parse(file_lists: List[str], parse_method: str, original_raw_df, progress=gr.Progress()):
# save an input file to a directory
progress(0.05)
langchain_parse_original = langchain_parse.__wrapped__
if parse_method in ["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf"]:
raw_df: pd.DataFrame = original_parse(langchain_parse_original,
data_path_list=file_lists, parse_method=parse_method)
elif parse_method == "llama-parse":
llama_cloud_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
if llama_cloud_api_key is None:
return "Please submit your Llama Cloud API key first.", original_raw_df
raw_df: pd.DataFrame = original_parse(llama_parse.__wrapped__, data_path_list=file_lists)
elif parse_method == "upstage🇰🇷":
upstage_api_key = os.getenv("UPSTAGE_API_KEY")
if upstage_api_key is None:
return "Please submit your Upstage API key first.", original_raw_df
raw_df: pd.DataFrame = original_parse(langchain_parse_original,
data_path_list=file_lists, parse_method="upstagedocumentparse")
else:
return "Unsupported parse method.", original_raw_df
progress(0.8)
return "Parsing Complete. Download at the bottom button.", raw_df
def run_chunk(use_existed_raw: bool, raw_df: pd.DataFrame, raw_file: str, chunk_method: str, chunk_size: int, chunk_overlap: int,
lang: str = "English", original_corpus_df = None, progress=gr.Progress()):
lang = change_lang_choice(lang)
if not use_existed_raw:
raw_df = pd.read_parquet(raw_file, engine="pyarrow")
raw_instance = Raw(raw_df)
if chunk_method in ["Token", "Sentence"]:
corpus = raw_instance.chunk("llama_index_chunk", chunk_method=chunk_method, chunk_size=chunk_size,
chunk_overlap=chunk_overlap, add_file_name=lang)
elif chunk_method in ["Semantic"]:
corpus = raw_instance.chunk("llama_index_chunk", chunk_method="Semantic_llama_index",
embed_model="openai", breakpoint_percnetile_threshold=0.95,
add_file_name=lang)
elif chunk_method == "Recursive":
corpus = raw_instance.chunk("langchain_chunk", chunk_method="recursivecharacter",
add_file_name=lang, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
else:
gr.Error("Unsupported chunk method.")
return "Unsupported chunk method.", original_corpus_df
progress(0.8)
return "Chunking Complete. Download at the bottom button.", corpus.data
def run_qa(use_existed_corpus: bool, corpus_df: pd.DataFrame, corpus_file: str, qa_method: str,
model_name: str, qa_cnt: int, batch_size: int, lang: str = "English", original_qa_df = None,
progress=gr.Progress()):
lang = change_lang_choice(lang)
if not use_existed_corpus:
corpus_df = pd.read_parquet(corpus_file, engine="pyarrow")
if os.getenv("OPENAI_API_KEY") is None:
gr.Error("Please submit your OpenAI API key first.")
return "Please submit your OpenAI API key first.", original_qa_df
if model_name is None:
gr.Error("Please select a model first.")
return "Please select a model first.", original_qa_df
llm = OpenAI(model=model_name)
if qa_method == "default":
qa = default_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
elif qa_method == "fast":
qa = fast_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
elif qa_method == "advanced":
qa = advanced_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
else:
gr.Error("Unsupported QA method.")
return "Unsupported QA method.", original_qa_df
return "QA Creation Complete. Download at the bottom button.", qa.data
def download_state(state: pd.DataFrame, change_name: str):
if state is None:
gr.Error("No data to download.")
return ""
with tempfile.TemporaryDirectory() as temp_dir:
filename = os.path.join(temp_dir, f"{change_name}.parquet")
state.to_parquet(filename, engine="pyarrow")
yield filename
with gr.Blocks(theme="earneleh/paris") as demo:
raw_df_state = gr.State()
corpus_df_state = gr.State()
qa_df_state = gr.State()
gr.HTML("<h1>AutoRAG Data Creation 🛠️</h1>")
with gr.Row():
openai_key_textbox = gr.Textbox(label="Please input your OpenAI API key and press Enter.", type="password",
info="You can get your API key from https://platform.openai.com/account/api-keys\n\n"
"AutoRAG do not store your API key.",
autofocus=True)
api_key_status_box = gr.Textbox(label="OpenAI API status", value="Not Set", interactive=False)
lang_choice = gr.Radio(["English", "한국어", "日本語"], label="Language",
value="English", info="Choose Langauge. En, Ko, Ja are supported.",
interactive=True)
with gr.Row(visible=False) as llama_cloud_api_key_row:
llama_key_textbox = gr.Textbox(label="Please input your Llama Cloud API key and press Enter.", type="password",
info="You can get your API key from https://docs.cloud.llamaindex.ai/llamacloud/getting_started/api_key\n\n"
"AutoRAG do not store your API key.",)
llama_key_status_box = gr.Textbox(label="Llama Cloud API status", value="Not Set", interactive=False)
with gr.Row(visible=False) as upstage_api_key_row:
upstage_key_textbox = gr.Textbox(label="Please input your Upstage API key and press Enter.", type="password",
info="You can get your API key from https://upstage.ai/\n\n"
"AutoRAG do not store your API key.",)
upstage_key_status_box = gr.Textbox(label="Upstage API status", value="Not Set", interactive=False)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## 1. Parse your PDF files\n\nUpload your pdf files and make it to raw.parquet.")
document_file_input = gr.File(label="Upload Files", type="filepath", file_count="multiple")
parse_choice = gr.Dropdown(
["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf", "llama-parse", "upstage🇰🇷"],
label="Parsing Method", info="Choose parsing method that you want")
parse_button = gr.Button(value="Run Parsing")
parse_status = gr.Textbox(value="Not Started", interactive=False)
raw_download_button = gr.DownloadButton(value=download_state, inputs=[raw_df_state, gr.State("raw")],
label="Download raw.parquet")
with gr.Column(scale=1):
gr.Markdown(
"## 2. Chunk your raw.parquet\n\nUse parsed raw.parquet or upload your own. It will make a corpus.parquet."
)
raw_file_input = gr.File(label="Upload raw.parquet", type="filepath", file_count="single", visible=False)
use_previous_raw_file = gr.Checkbox(label="Use previous raw.parquet", value=True)
chunk_choice = gr.Dropdown(
["Token", "Sentence", "Semantic", "Recursive"],
label="Chunking Method", info="Choose chunking method that you want")
chunk_size = gr.Slider(minimum=128, maximum=1024, step=128, label="Chunk Size", value=256)
chunk_overlap = gr.Slider(minimum=16, maximum=256, step=16, label="Chunk Overlap", value=32)
chunk_button = gr.Button(value="Run Chunking")
chunk_status = gr.Textbox(value="Not Started", interactive=False)
corpus_download_button = gr.DownloadButton(label="Download corpus.parquet",
value=download_state, inputs=[corpus_df_state, gr.State("corpus")])
with gr.Column(scale=1):
gr.Markdown(
"## 3. Create QA dataset from your corpus.parquet\n\nQA dataset is essential to run AutoRAG. Upload corpus.parquet & select QA method and run.")
gr.HTML("<b style='color: red; background-color: black; font-weight: bold;'>Warning: QA Creation uses an OpenAI model, which can be costly. Start with a small batch to gauge expenses.</b>")
corpus_file_input = gr.File(label="Upload corpus.parquet", type="filepath", file_count="single",
visible=False)
use_previous_corpus_file = gr.Checkbox(label="Use previous corpus.parquet", value=True)
qa_choice = gr.Radio(["default", "fast", "advanced"], label="QA Method",
info="Choose QA method that you want")
model_choice = gr.Radio(["gpt-4o-mini", "gpt-4o"], label="Select model for data creation",
)
qa_cnt = gr.Slider(minimum=20, maximum=150, step=5, label="Number of QA pairs", value=80)
batch_size = gr.Slider(minimum=1, maximum=16, step=1,
label="Batch Size to OpenAI model. If there is an error, decrease this.", value=16)
run_qa_button = gr.Button(value="Run QA Creation")
qa_status = gr.Textbox(value="Not Started", interactive=False)
qa_download_button = gr.DownloadButton(label="Download qa.parquet",
value=download_state, inputs=[qa_df_state, gr.State("qa")])
#================================================================================================#
# Logics
use_previous_raw_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_raw_file],
outputs=[raw_file_input])
use_previous_corpus_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_corpus_file],
outputs=[corpus_file_input])
openai_key_textbox.submit(on_submit_openai_key, inputs=[openai_key_textbox], outputs=api_key_status_box)
# Parsing
parse_button.click(run_parse, inputs=[document_file_input, parse_choice, raw_df_state],
outputs=[parse_status, raw_df_state])
# Chunking
chunk_button.click(run_chunk, inputs=[use_previous_raw_file, raw_df_state, raw_file_input, chunk_choice, chunk_size, chunk_overlap,
lang_choice, corpus_df_state],
outputs=[chunk_status, corpus_df_state])
# QA Creation
run_qa_button.click(run_qa, inputs=[use_previous_corpus_file, corpus_df_state, corpus_file_input, qa_choice,
model_choice, qa_cnt, batch_size, lang_choice,
qa_df_state],
outputs=[qa_status, qa_df_state])
# API Key visibility
parse_choice.change(change_visible_status_api_key, inputs=[parse_choice],
outputs=[llama_cloud_api_key_row, upstage_api_key_row])
llama_key_textbox.submit(on_submit_llama_cloud_key, inputs=[llama_key_textbox], outputs=llama_key_status_box)
upstage_key_textbox.submit(on_submit_upstage_key, inputs=[upstage_key_textbox], outputs=upstage_key_status_box)
if __name__ == "__main__":
demo.launch(share=False, debug=True)
# demo.launch(share=False, debug=False)