Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -21,33 +21,47 @@ model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(devi
|
|
21 |
model.eval()
|
22 |
|
23 |
def preprocess_image(image):
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def draw_boxes(image, outputs, threshold=0.3):
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
def detect_objects(image):
|
42 |
image_tensor = preprocess_image(image)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
iface = gr.Interface(
|
49 |
fn=detect_objects,
|
50 |
-
inputs=gr.
|
51 |
outputs=gr.Image(type="pil"),
|
52 |
live=True
|
53 |
)
|
|
|
21 |
model.eval()
|
22 |
|
23 |
def preprocess_image(image):
|
24 |
+
try:
|
25 |
+
image_tensor = F.to_tensor(image)
|
26 |
+
return image_tensor.unsqueeze(0).to(device)
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error in preprocessing image: {e}")
|
29 |
+
return None
|
30 |
|
31 |
def draw_boxes(image, outputs, threshold=0.3):
|
32 |
+
try:
|
33 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
34 |
+
h, w, _ = image.shape
|
35 |
|
36 |
+
for box in outputs:
|
37 |
+
score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item()
|
38 |
+
if score > threshold:
|
39 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
40 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
41 |
+
text = f"{model.names[label]:s}: {score:.2f}"
|
42 |
+
cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
43 |
|
44 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error in drawing boxes: {e}")
|
47 |
+
return image
|
48 |
|
49 |
def detect_objects(image):
|
50 |
image_tensor = preprocess_image(image)
|
51 |
+
if image_tensor is None:
|
52 |
+
return image
|
53 |
+
try:
|
54 |
+
outputs = model(image_tensor)
|
55 |
+
outputs = non_max_suppression(outputs)[0]
|
56 |
+
result_image = draw_boxes(image, outputs)
|
57 |
+
return result_image
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error in detecting objects: {e}")
|
60 |
+
return image
|
61 |
|
62 |
iface = gr.Interface(
|
63 |
fn=detect_objects,
|
64 |
+
inputs=gr.Video(source="webcam", type="pil"),
|
65 |
outputs=gr.Image(type="pil"),
|
66 |
live=True
|
67 |
)
|