Aumkeshchy2003's picture
Update app.py
bccf53b verified
raw
history blame
2.9 kB
import os
import subprocess
# Clone the yolov5 repository and install its requirements
if not os.path.exists('yolov5'):
subprocess.run(['git', 'clone', 'https://github.com/ultralytics/yolov5'], check=True)
subprocess.run(['pip', 'install', '-r', 'yolov5/requirements.txt'], check=True)
import torch
import torchvision
from torchvision.transforms import functional as F
from PIL import Image
import cv2
import gradio as gr
import numpy as np
from yolov5.models.yolo import Model
from yolov5.utils.general import non_max_suppression
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
model.eval()
print("Model loaded successfully")
def preprocess_image(image):
try:
image = Image.fromarray(image) # Convert numpy array to PIL Image
image_tensor = F.to_tensor(image).unsqueeze(0).to(device)
print(f"Preprocessed image tensor: {image_tensor.shape}")
return image_tensor
except Exception as e:
print(f"Error in preprocessing image: {e}")
return None
def draw_boxes(image, outputs, threshold=0.3):
try:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
h, w, _ = image.shape
for box in outputs:
if box is not None:
x1, y1, x2, y2, score, label = box[:6]
if score > threshold:
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
text = f"{model.names[int(label)]:s}: {score:.2f}"
cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
except Exception as e:
print(f"Error in drawing boxes: {e}")
return image
def detect_objects(image):
image_tensor = preprocess_image(image)
if image_tensor is None:
return image
try:
outputs = model(image_tensor)[0] # Get the first element of the output
print(f"Model raw outputs: {outputs}")
outputs = non_max_suppression(outputs, conf_thres=0.25, iou_thres=0.45)[0] # Apply NMS
if outputs is None or len(outputs) == 0:
print("No objects detected.")
return image
print(f"Filtered outputs: {outputs}")
result_image = draw_boxes(image, outputs.cpu().numpy())
return result_image
except Exception as e:
print(f"Error in detecting objects: {e}")
return image
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy"),
outputs=gr.Image(type="numpy"),
title="YOLOv5 Object Detection",
description="Upload an image to detect objects using the YOLOv5 model."
)
if __name__ == "__main__":
iface.launch()