Spaces:
Running
Running
import gradio as gr | |
import torch | |
from datasets import load_dataset | |
from transformers import SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech | |
# Load the fine-tuned model and vocoder for Italian from the new model ID | |
model_id = "Aumkeshchy2003/speecht5_finetuned_AumkeshChy_italian_tts" | |
model = SpeechT5ForTextToSpeech.from_pretrained(model_id) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Load speaker embeddings dataset | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) | |
# Load processor for the new Italian model | |
processor = SpeechT5Processor.from_pretrained(model_id) | |
replacements = [ | |
('à', 'ah'), | |
('è', 'eh'), | |
('ì', 'ee'), | |
('í', 'ee'), | |
('ï', 'ee'), | |
('ò', 'aw'), | |
('ó', 'oh'), | |
('ù', 'oo'), | |
('ú', 'oo') | |
] | |
number_words = { | |
0: "zero", 1: "oo-noh", 2: "doo-eh", 3: "tre", 4: "quattro", 5: "chinque", 6: "sei", 7: "sette", 8: "otto", 9: "nove", | |
10: "decei", 11: "undici", 12: "dodici", 13: "tredici", 14: "quattordici", 15: "quindici", 16: "sedici", 17: "diciassette", | |
18: "diciotto", 19: "diciannove", 20: "venti", 30: "trenta", 40: "quaranta", 50: "cinquanta", 60: "sessanta", 70: "settanta", | |
80: "ottanta", 90: "novanta", 100: "cento", 1000: "mille" | |
} | |
def number_to_words(number): | |
if number < 20: | |
return number_words[number] | |
elif number < 100: | |
tens, unit = divmod(number, 10) | |
return number_words[tens * 10] + (" " + number_words[unit] if unit else "") | |
elif number < 1000: | |
hundreds, remainder = divmod(number, 100) | |
return (number_words[hundreds] + " centi" if hundreds > 1 else " centi") + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000: | |
thousands, remainder = divmod(number, 1000) | |
return (number_to_words(thousands) + " mille" if thousands > 1 else " mille") + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000000: | |
millions, remainder = divmod(number, 1000000) | |
return number_to_words(millions) + " millione" + (" " + number_to_words(remainder) if remainder else "") | |
elif number < 1000000000000: | |
billions, remainder = divmod(number, 1000000000) | |
return number_to_words(billions) + " milliardo" + (" " + number_to_words(remainder) if remainder else "") | |
else: | |
return str(number) | |
def replace_numbers_with_words(text): | |
def replace(match): | |
number = int(match.group()) | |
return number_to_words(number) | |
# Find the numbers and change with words. | |
result = re.sub(r'\b\d+\b', replace, text) | |
return result | |
# Text-to-speech synthesis function | |
def synthesize_speech(text): | |
# Clean up text for Italian-specific accents | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
# Process input text | |
inputs = processor(text=text, return_tensors="pt") | |
# Generate speech using the model and vocoder | |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) | |
# Return the generated speech as (sample_rate, audio_array) | |
return (16000, speech.cpu().numpy()) | |
# Title and description for the Gradio interface | |
title = "Fine-tuning TTS for a Italian Language Using SpeechT5" | |
description = """ | |
Enter Italian text, and listen to the generated speech | |
""" | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=synthesize_speech, | |
inputs=gr.Textbox(label="Input Text", placeholder="Enter Italian text"), | |
outputs=gr.Audio(label="Generated Speech"), | |
title=title, | |
description=description, | |
examples=["Buongiorno, come sta? Buona giornata"] | |
) | |
# Launch the interface | |
interface.launch() |