Augustya07 commited on
Commit
55524f3
·
1 Parent(s): c8a09ca

Upload 3 files

Browse files
Files changed (3) hide show
  1. Dockerfile +16 -0
  2. LangChain_QA_Panel_App.ipynb +254 -0
  3. requirements.txt +7 -0
Dockerfile ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+ RUN python3 -m pip install --no-cache-dir --upgrade pip
7
+ RUN python3 -m pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ CMD ["panel", "serve", "/code/LangChain_QA_Panel_App.ipynb", "--address", "0.0.0.0", "--port", "7860", "--allow-websocket-origin", "*"]
12
+
13
+ RUN mkdir /.cache
14
+ RUN chmod 777 /.cache
15
+ RUN mkdir .chroma
16
+ RUN chmod 777 .chroma
LangChain_QA_Panel_App.ipynb ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "04815d1b-44ee-4bd3-878e-fa0c3bf9fa7f",
6
+ "metadata": {
7
+ "tags": []
8
+ },
9
+ "source": [
10
+ "# LangChain QA Panel App"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": null,
16
+ "id": "a181568b-9cde-4a55-a853-4d2a41dbfdad",
17
+ "metadata": {
18
+ "tags": []
19
+ },
20
+ "outputs": [],
21
+ "source": [
22
+ "#!pip install langchain openai chromadb tiktoken pypdf panel"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "9a464409-d064-4766-a9cb-5119f6c4b8f5",
29
+ "metadata": {
30
+ "tags": []
31
+ },
32
+ "outputs": [],
33
+ "source": [
34
+ "import os \n",
35
+ "from langchain.chains import RetrievalQA\n",
36
+ "from langchain.llms import OpenAI\n",
37
+ "from langchain.document_loaders import TextLoader\n",
38
+ "from langchain.document_loaders import PyPDFLoader\n",
39
+ "from langchain.indexes import VectorstoreIndexCreator\n",
40
+ "from langchain.text_splitter import CharacterTextSplitter\n",
41
+ "from langchain.embeddings import OpenAIEmbeddings\n",
42
+ "from langchain.vectorstores import Chroma\n",
43
+ "import panel as pn\n",
44
+ "import tempfile\n"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": null,
50
+ "id": "b2d07ea5-9ff2-4c96-a8dc-92895d870b73",
51
+ "metadata": {
52
+ "tags": []
53
+ },
54
+ "outputs": [],
55
+ "source": [
56
+ "pn.extension('texteditor', template=\"bootstrap\", sizing_mode='stretch_width')\n",
57
+ "pn.state.template.param.update(\n",
58
+ " main_max_width=\"690px\",\n",
59
+ " header_background=\"#F08080\",\n",
60
+ ")"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": null,
66
+ "id": "763db4d0-3436-41d3-8b0f-e66ce16468cd",
67
+ "metadata": {
68
+ "tags": []
69
+ },
70
+ "outputs": [],
71
+ "source": [
72
+ "file_input = pn.widgets.FileInput(width=300)\n",
73
+ "\n",
74
+ "openaikey = pn.widgets.PasswordInput(\n",
75
+ " value=\"\", placeholder=\"Enter your OpenAI API Key here...\", width=300\n",
76
+ ")\n",
77
+ "prompt = pn.widgets.TextEditor(\n",
78
+ " value=\"\", placeholder=\"Enter your questions here...\", height=160, toolbar=False\n",
79
+ ")\n",
80
+ "run_button = pn.widgets.Button(name=\"Run!\")\n",
81
+ "\n",
82
+ "select_k = pn.widgets.IntSlider(\n",
83
+ " name=\"Number of relevant chunks\", start=1, end=5, step=1, value=2\n",
84
+ ")\n",
85
+ "select_chain_type = pn.widgets.RadioButtonGroup(\n",
86
+ " name='Chain type', \n",
87
+ " options=['stuff', 'map_reduce', \"refine\", \"map_rerank\"],\n",
88
+ " value='map_reduce'\n",
89
+ ")\n",
90
+ "\n",
91
+ "widgets = pn.Row(\n",
92
+ " pn.Column(prompt, run_button, margin=5),\n",
93
+ " pn.Card(\n",
94
+ " \"Chain type:\",\n",
95
+ " pn.Column(select_chain_type, select_k),\n",
96
+ " title=\"Advanced settings\"\n",
97
+ " ), width=670\n",
98
+ ")"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": null,
104
+ "id": "9b83cc06-3401-498f-8f84-8a98370f3121",
105
+ "metadata": {
106
+ "tags": []
107
+ },
108
+ "outputs": [],
109
+ "source": [
110
+ "def qa(file, query, chain_type, k):\n",
111
+ " # load document\n",
112
+ " loader = PyPDFLoader(file)\n",
113
+ " documents = loader.load()\n",
114
+ " # split the documents into chunks\n",
115
+ " text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
116
+ " texts = text_splitter.split_documents(documents)\n",
117
+ " # select which embeddings we want to use\n",
118
+ " embeddings = OpenAIEmbeddings()\n",
119
+ " # create the vectorestore to use as the index\n",
120
+ " db = Chroma.from_documents(texts, embeddings)\n",
121
+ " # expose this index in a retriever interface\n",
122
+ " retriever = db.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": k})\n",
123
+ " # create a chain to answer questions \n",
124
+ " qa = RetrievalQA.from_chain_type(\n",
125
+ " llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)\n",
126
+ " result = qa({\"query\": query})\n",
127
+ " print(result['result'])\n",
128
+ " return result"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": null,
134
+ "id": "2722f43b-daf6-4d17-a842-41203ae9b140",
135
+ "metadata": {
136
+ "tags": []
137
+ },
138
+ "outputs": [],
139
+ "source": [
140
+ "# os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
141
+ "# result = qa(\"materials/example.pdf\", \"When was GPT-2 created?\", \"map_reduce\", 2)"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": null,
147
+ "id": "60e1b3d3-c0d2-4260-ae0c-26b03f1b8824",
148
+ "metadata": {},
149
+ "outputs": [],
150
+ "source": [
151
+ "convos = [] # store all panel objects in a list\n",
152
+ "\n",
153
+ "def qa_result(_):\n",
154
+ " os.environ[\"OPENAI_API_KEY\"] = openaikey.value\n",
155
+ " \n",
156
+ " # save pdf file to a temp file \n",
157
+ " if file_input.value is not None:\n",
158
+ " file_input.save(\"/.cache/temp.pdf\")\n",
159
+ " \n",
160
+ " prompt_text = prompt.value\n",
161
+ " if prompt_text:\n",
162
+ " result = qa(file=\"/.cache/temp.pdf\", query=prompt_text, chain_type=select_chain_type.value, k=select_k.value)\n",
163
+ " convos.extend([\n",
164
+ " pn.Row(\n",
165
+ " pn.panel(\"\\U0001F60A\", width=10),\n",
166
+ " prompt_text,\n",
167
+ " width=600\n",
168
+ " ),\n",
169
+ " pn.Row(\n",
170
+ " pn.panel(\"\\U0001F916\", width=10),\n",
171
+ " pn.Column(\n",
172
+ " result[\"result\"],\n",
173
+ " \"Relevant source text:\",\n",
174
+ " pn.pane.Markdown('\\n--------------------------------------------------------------------\\n'.join(doc.page_content for doc in result[\"source_documents\"]))\n",
175
+ " )\n",
176
+ " )\n",
177
+ " ])\n",
178
+ " return pn.Column(*convos, margin=15, width=575, min_height=400)\n"
179
+ ]
180
+ },
181
+ {
182
+ "cell_type": "code",
183
+ "execution_count": null,
184
+ "id": "c3a70857-0b98-4f62-a9c0-b62ca42b474c",
185
+ "metadata": {
186
+ "tags": []
187
+ },
188
+ "outputs": [],
189
+ "source": [
190
+ "qa_interactive = pn.panel(\n",
191
+ " pn.bind(qa_result, run_button),\n",
192
+ " loading_indicator=True,\n",
193
+ ")"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "id": "228e2b42-b1ed-43af-b923-031a70241ab0",
200
+ "metadata": {
201
+ "tags": []
202
+ },
203
+ "outputs": [],
204
+ "source": [
205
+ "output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=670, scroll=True)"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "code",
210
+ "execution_count": null,
211
+ "id": "1b0ec253-2bcd-4f91-96d8-d8456e900a58",
212
+ "metadata": {
213
+ "tags": []
214
+ },
215
+ "outputs": [],
216
+ "source": [
217
+ "# layout\n",
218
+ "pn.Column(\n",
219
+ " pn.pane.Markdown(\"\"\"\n",
220
+ " ## \\U0001F60A! Question Answering with your PDF file\n",
221
+ " \n",
222
+ " 1) Upload a PDF. 2) Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account). 3) Type a question and click \"Run\"\n",
223
+ " \n",
224
+ " \"\"\"),\n",
225
+ " pn.Row(file_input,openaikey),\n",
226
+ " output,\n",
227
+ " widgets\n",
228
+ "\n",
229
+ ").servable()"
230
+ ]
231
+ }
232
+ ],
233
+ "metadata": {
234
+ "kernelspec": {
235
+ "display_name": "Python 3 (ipykernel)",
236
+ "language": "python",
237
+ "name": "python3"
238
+ },
239
+ "language_info": {
240
+ "codemirror_mode": {
241
+ "name": "ipython",
242
+ "version": 3
243
+ },
244
+ "file_extension": ".py",
245
+ "mimetype": "text/x-python",
246
+ "name": "python",
247
+ "nbconvert_exporter": "python",
248
+ "pygments_lexer": "ipython3",
249
+ "version": "3.10.11"
250
+ }
251
+ },
252
+ "nbformat": 4,
253
+ "nbformat_minor": 5
254
+ }
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ langchain
2
+ openai
3
+ chromadb
4
+ pypdf
5
+ tiktoken
6
+ panel
7
+ notebook