Spaces:
Sleeping
Sleeping
import argparse | |
import datetime | |
import os | |
import subprocess | |
from string import Template | |
import openai | |
import re | |
from pathlib import Path | |
import glob | |
from utils import get_key | |
import pickle | |
import time | |
import json5 | |
from retrying import retry | |
from code_generator import check_json_script, collect_and_check_audio_data | |
from tabulate import tabulate | |
import random | |
import string | |
import utils | |
import voice_presets | |
from code_generator import AudioCodeGenerator | |
USE_OPENAI_CACHE = True | |
openai_cache = [] | |
if USE_OPENAI_CACHE: | |
os.makedirs('cache', exist_ok=True) | |
for cache_file in glob.glob('cache/*.pkl'): | |
with open(cache_file, 'rb') as file: | |
openai_cache.append(pickle.load(file)) | |
openai.api_key = get_key() | |
def chat_with_gpt(prompt): | |
if USE_OPENAI_CACHE: | |
filtered_object = list(filter(lambda x: x['prompt'] == prompt, openai_cache)) | |
if len(filtered_object) > 0: | |
response = filtered_object[0]['response'] | |
return response | |
chat = openai.ChatCompletion.create( | |
# model="gpt-3.5-turbo", | |
model="gpt-4", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are a helpful assistant." | |
}, | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
) | |
if USE_OPENAI_CACHE: | |
cache_obj = { | |
'prompt': prompt, | |
'response': chat['choices'][0]['message']['content'] | |
} | |
with open(f'cache/{time.time()}.pkl', 'wb') as _openai_cache: | |
pickle.dump(cache_obj, _openai_cache) | |
openai_cache.append(cache_obj) | |
return chat['choices'][0]['message']['content'] | |
def get_file_content(filename): | |
with open(filename, 'r') as file: | |
return file.read().strip() | |
def write_to_file(filename, content): | |
with open(filename, 'w') as file: | |
file.write(content) | |
def extract_substring_with_quotes(input_string, quotes="'''"): | |
pattern = f"{quotes}(.*?){quotes}" | |
matches = re.findall(pattern, input_string, re.DOTALL) | |
return matches | |
def try_extract_content_from_quotes(content): | |
if "'''" in content: | |
return extract_substring_with_quotes(content)[0] | |
elif "```" in content: | |
return extract_substring_with_quotes(content, quotes="```")[0] | |
else: | |
return content | |
def maybe_get_content_from_file(content_or_filename): | |
if os.path.exists(content_or_filename): | |
with open(content_or_filename, 'r') as file: | |
return file.read().strip() | |
return content_or_filename | |
# Pipeline Interface Guidelines: | |
# | |
# Init calls: | |
# - Init calls must be called before running the actual steps | |
# - init_session() is called every time a gradio webpage is loaded | |
# | |
# Single Step: | |
# - takes input (file or content) and output path as input | |
# - most of time just returns output content | |
# | |
# Compositional Step: | |
# - takes session_id as input (you have session_id, you have all the paths) | |
# - run a series of steps | |
# This is called for every new gradio webpage | |
def init_session(session_id=''): | |
def uid8(): | |
return ''.join(random.choices(string.ascii_lowercase + string.digits, k=8)) | |
if session_id == '': | |
session_id = f'{datetime.datetime.now().strftime("%Y%m%d%H%M%S")}_{uid8()}' | |
# create the paths | |
os.makedirs(utils.get_session_voice_preset_path(session_id)) | |
os.makedirs(utils.get_session_audio_path(session_id)) | |
return session_id | |
def input_text_to_json_script_with_retry(complete_prompt_path): | |
print(" trying ...") | |
complete_prompt = get_file_content(complete_prompt_path) | |
json_response = try_extract_content_from_quotes(chat_with_gpt(complete_prompt)) | |
json_data = json5.loads(json_response) | |
try: | |
check_json_script(json_data) | |
collect_and_check_audio_data(json_data) | |
except Exception as err: | |
print(f'JSON ERROR: {err}') | |
retry_complete_prompt = f'{complete_prompt}\n```\n{json_response}```\nThe script above has format error(s). Return the fixed script.\n\nScript:\n' | |
write_to_file(complete_prompt_path, retry_complete_prompt) | |
raise err | |
return json_response | |
# Step 1: input_text to json | |
def input_text_to_json_script(input_text, output_path): | |
print('Step 1: Writing audio script with LLM ...') | |
input_text = maybe_get_content_from_file(input_text) | |
text_to_audio_script_prompt = get_file_content('prompts/text_to_json.prompt') | |
prompt = f'{text_to_audio_script_prompt}\n\nInput text: {input_text}\n\nScript:\n' | |
complete_prompt_path = output_path / 'complete_input_text_to_audio_script.prompt' | |
write_to_file(complete_prompt_path, prompt) | |
audio_script_response = input_text_to_json_script_with_retry(complete_prompt_path) | |
generated_audio_script_filename = output_path / 'audio_script.json' | |
write_to_file(generated_audio_script_filename, audio_script_response) | |
return audio_script_response | |
# Step 2: json to char-voice map | |
def json_script_to_char_voice_map(json_script, voices, output_path): | |
def create_complete_char_voice_map(char_voice_map): | |
return | |
print('Step 2: Parsing character voice with LLM...') | |
json_script_content = maybe_get_content_from_file(json_script) | |
prompt = get_file_content('prompts/audio_script_to_character_voice_map.prompt') | |
presets_str = '\n'.join(f"{preset['id']}: {preset['desc']}" for preset in voices.values()) | |
prompt = Template(prompt).substitute(voice_and_desc=presets_str) | |
prompt = f"{prompt}\n\nAudio script:\n'''\n{json_script_content}\n'''\n\noutput:\n" | |
write_to_file(output_path / 'complete_audio_script_to_char_voice_map.prompt', prompt) | |
char_voice_map_response = try_extract_content_from_quotes(chat_with_gpt(prompt)) | |
char_voice_map = json5.loads(char_voice_map_response) | |
# enrich char_voice_map with voice preset metadata | |
complete_char_voice_map = {c: voices[char_voice_map[c]] for c in char_voice_map} | |
char_voice_map_filename = output_path / 'character_voice_map.json' | |
write_to_file(char_voice_map_filename, json5.dumps(complete_char_voice_map)) | |
return complete_char_voice_map | |
# Step 3: json to py code | |
def json_script_and_char_voice_map_to_audio_gen_code(json_script_filename, char_voice_map_filename, output_path, result_filename): | |
print('Step 3: Compiling audio script to Python program ...') | |
audio_code_generator = AudioCodeGenerator() | |
code = audio_code_generator.parse_and_generate( | |
json_script_filename, | |
char_voice_map_filename, | |
output_path, | |
result_filename | |
) | |
write_to_file(output_path / 'audio_generation.py', code) | |
# Step 4: py code to final wav | |
def audio_code_gen_to_result(audio_gen_code_path): | |
print('Step 4: Start running Python program ...') | |
audio_gen_code_filename = audio_gen_code_path / 'audio_generation.py' | |
os.system(f'python {audio_gen_code_filename}') | |
# Function call used by Gradio: input_text to json | |
def generate_json_file(session_id, input_text): | |
output_path = utils.get_session_path(session_id) | |
# Step 1 | |
return input_text_to_json_script(input_text, output_path) | |
# Function call used by Gradio: json to result wav | |
def generate_audio(session_id, json_script): | |
output_path = utils.get_session_path(session_id) | |
output_audio_path = utils.get_session_audio_path(session_id) | |
voices = voice_presets.get_merged_voice_presets(session_id) | |
# Step 2 | |
json_script_to_char_voice_map(json_script, voices, output_path) | |
# Step 3 | |
json_script_filename = output_path / 'audio_script.json' | |
char_voice_map_filename = output_path / 'character_voice_map.json' | |
result_wav_basename = f'res_{session_id}' | |
json_script_and_char_voice_map_to_audio_gen_code(json_script_filename, char_voice_map_filename, output_path, result_wav_basename) | |
# Step 4 | |
audio_code_gen_to_result(output_path) | |
result_wav_filename = output_audio_path / f'{result_wav_basename}.wav' | |
print(f'Done all processes, result: {result_wav_filename}') | |
return result_wav_filename | |
# Convenient function call used by wavjourney_cli | |
def full_steps(session_id, input_text): | |
json_script = generate_json_file(session_id, input_text) | |
return generate_audio(session_id, json_script) | |
def convert_json_to_md(audio_script_response): | |
audio_json_data = json5.loads(audio_script_response) | |
table = [[node.get(field, 'N/A') for field in ["audio_type", "layout", "id", "character", "action", 'vol']] + | |
[node.get("desc", "N/A") if node.get("audio_type") != "speech" else node.get("text", "N/A")] + | |
[node.get("len", "Auto") if "len" in node else "Auto"] | |
for i, node in enumerate(audio_json_data)] | |
headers = ["Audio Type", "Layout", "ID", "Character", "Action", 'Volume', "Description", "Length" ] | |
# Tabulate | |
table_txt = tabulate(table, headers, tablefmt="github") | |
return table_txt | |