Spaces:
Runtime error
Runtime error
from pathlib import Path | |
from threading import Thread | |
import gdown | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
from pipeline import build_audiosep | |
CHECKPOINTS_DIR = Path("checkpoint") | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# The model will be loaded in the future | |
MODEL_NAME = CHECKPOINTS_DIR / "audiosep_base_4M_steps.ckpt" | |
MODEL = build_audiosep( | |
config_yaml="config/audiosep_base.yaml", | |
checkpoint_path=MODEL_NAME, | |
device=DEVICE, | |
) | |
description = """ | |
# AudioSep: Separate Anything You Describe | |
[[Project Page]](https://audio-agi.github.io/Separate-Anything-You-Describe) [[Paper]](https://audio-agi.github.io/Separate-Anything-You-Describe/AudioSep_arXiv.pdf) [[Code]](https://github.com/Audio-AGI/AudioSep) | |
AudioSep is a foundation model for open-domain sound separation with natural language queries. | |
AudioSep demonstrates strong separation performance and impressivezero-shot generalization ability on | |
numerous tasks such as audio event separation, musical instrument separation, and speech enhancement. | |
""" | |
def inference(audio_file_path: str, text: str): | |
print(f"Separate audio from [{audio_file_path}] with textual query [{text}]") | |
mixture, _ = librosa.load(audio_file_path, sr=32000, mono=True) | |
with torch.no_grad(): | |
text = [text] | |
conditions = MODEL.query_encoder.get_query_embed( | |
modality="text", text=text, device=DEVICE | |
) | |
input_dict = { | |
"mixture": torch.Tensor(mixture)[None, None, :].to(DEVICE), | |
"condition": conditions, | |
} | |
sep_segment = MODEL.ss_model(input_dict)["waveform"] | |
sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy() | |
return 32000, np.round(sep_segment * 32767).astype(np.int16) | |
with gr.Blocks(title="AudioSep") as demo: | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
input_audio = gr.Audio(type="filepath") | |
text = gr.Textbox() | |
with gr.Column(): | |
with gr.Column(): | |
output_audio = gr.Audio(scale=10) | |
button = gr.Button( | |
"Separate", | |
variant="primary", | |
scale=2, | |
size="lg", | |
interactive=True, | |
) | |
button.click( | |
fn=inference, inputs=[input_audio, text], outputs=[output_audio] | |
) | |
demo.queue().launch(share=True) | |