Spaces:
Build error
Build error
Adiciona script e cron-tab
Browse files- .vscode/launch.json +17 -0
- app.py +1 -1
- app1.py +99 -0
- checkYolox.sh +16 -0
- checkYoloxGPU.sh +16 -0
- configs/__pycache__/__init__.cpython-38.pyc +0 -0
- configs/__pycache__/yolox_s.cpython-38.pyc +0 -0
- dog.jpg +0 -0
- flagged/Input Image/tmp6pzjxx_c.jpg +0 -0
- flagged/log.csv +2 -0
- gradio_cached_examples/18/log.csv +4 -0
- small-vehicles1.jpeg +0 -0
- telegramCrise.sh +1 -0
- yoloxdetect2/__pycache__/helpers.cpython-38.pyc +0 -0
- zidane.jpg +0 -0
.vscode/launch.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
// Use IntelliSense to learn about possible attributes.
|
3 |
+
// Hover to view descriptions of existing attributes.
|
4 |
+
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
5 |
+
"version": "0.2.0",
|
6 |
+
"configurations": [
|
7 |
+
|
8 |
+
{
|
9 |
+
"name": "Python: Current File",
|
10 |
+
"type": "python",
|
11 |
+
"request": "launch",
|
12 |
+
"program": "${file}",
|
13 |
+
"console": "integratedTerminal",
|
14 |
+
"justMyCode": true
|
15 |
+
}
|
16 |
+
]
|
17 |
+
}
|
app.py
CHANGED
@@ -96,4 +96,4 @@ demo_app = gr.Interface(
|
|
96 |
live=True,
|
97 |
theme='huggingface',
|
98 |
)
|
99 |
-
demo_app.launch(debug=True, enable_queue=True)
|
|
|
96 |
live=True,
|
97 |
theme='huggingface',
|
98 |
)
|
99 |
+
demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8080, enable_queue=True)
|
app1.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
#os.system("pip -qq install yoloxdetect==0.0.7")
|
4 |
+
os.system("pip -qq install yoloxdetect")
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
import yoloxdetect2.helpers as yoloxdetect
|
8 |
+
#from yoloxdetect import YoloxDetector
|
9 |
+
|
10 |
+
|
11 |
+
# Images
|
12 |
+
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
13 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
14 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Megvii-BaseDetection/YOLOX/main/assets/dog.jpg', 'dog.jpg')
|
15 |
+
|
16 |
+
model = yoloxdetect.YoloxDetector2('kadirnar/yolox_s-v0.1.1', 'configs.yolox_s', device="cuda", hf_model=True)
|
17 |
+
|
18 |
+
def yolox_inference(
|
19 |
+
image_path: gr.inputs.Image = None,
|
20 |
+
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
|
21 |
+
config_path: gr.inputs.Textbox = 'configs.yolox_s',
|
22 |
+
image_size: gr.inputs.Slider = 640
|
23 |
+
):
|
24 |
+
"""
|
25 |
+
YOLOX inference function
|
26 |
+
Args:
|
27 |
+
image: Input image
|
28 |
+
model_path: Path to the model
|
29 |
+
config_path: Path to the config file
|
30 |
+
image_size: Image size
|
31 |
+
Returns:
|
32 |
+
Rendered image
|
33 |
+
"""
|
34 |
+
|
35 |
+
#model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True)
|
36 |
+
#pred = model.predict(image_path=image_path, image_size=image_size)
|
37 |
+
pred2 = []
|
38 |
+
if model :
|
39 |
+
model.torchyolo = True
|
40 |
+
pred2 = model.predict(image_path=image_path, image_size=image_size)
|
41 |
+
#text = "Ola"
|
42 |
+
#print (vars(model))
|
43 |
+
#print (pred2[0])
|
44 |
+
#print (pred2[1])
|
45 |
+
#print (pred2[2])
|
46 |
+
|
47 |
+
|
48 |
+
tensor = {
|
49 |
+
"tensorflow": [
|
50 |
+
]
|
51 |
+
}
|
52 |
+
|
53 |
+
if pred2 is not None:
|
54 |
+
#print (pred2[3])
|
55 |
+
for i, element in enumerate(pred2[0]):
|
56 |
+
object = {}
|
57 |
+
itemclass = round(pred2[2][i].item())
|
58 |
+
object["classe"] = itemclass
|
59 |
+
object["nome"] = pred2[3][itemclass]
|
60 |
+
object["score"] = pred2[1][i].item()
|
61 |
+
object["x"] = element[0].item()
|
62 |
+
object["y"] = element[1].item()
|
63 |
+
object["w"] = element[2].item()
|
64 |
+
object["h"] = element[3].item()
|
65 |
+
tensor["tensorflow"].append(object)
|
66 |
+
|
67 |
+
#print(tensor)
|
68 |
+
|
69 |
+
text = json.dumps(tensor)
|
70 |
+
return text
|
71 |
+
|
72 |
+
|
73 |
+
inputs = [
|
74 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
75 |
+
gr.inputs.Textbox(lines=1, label="Model Path", default="kadirnar/yolox_s-v0.1.1"),
|
76 |
+
gr.inputs.Textbox(lines=1, label="Config Path", default="configs.yolox_s"),
|
77 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
78 |
+
]
|
79 |
+
|
80 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
81 |
+
title = "SIMULADOR PARA RECONHECIMENTO DE IMAGEM"
|
82 |
+
|
83 |
+
examples = [
|
84 |
+
["small-vehicles1.jpeg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640],
|
85 |
+
["zidane.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640],
|
86 |
+
["dog.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640],
|
87 |
+
]
|
88 |
+
|
89 |
+
demo_app = gr.Interface(
|
90 |
+
fn=yolox_inference,
|
91 |
+
inputs=inputs,
|
92 |
+
outputs=["text"],
|
93 |
+
title=title,
|
94 |
+
examples=examples,
|
95 |
+
cache_examples=True,
|
96 |
+
live=True,
|
97 |
+
theme='huggingface',
|
98 |
+
)
|
99 |
+
demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8081, enable_queue=True)
|
checkYolox.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
export path=/home/atualli/.local/lib/python3.8/site-packages:$PATH
|
3 |
+
cd ~/Projetos/huggingface/yoloxTeste
|
4 |
+
SERVER=192.168.0.153
|
5 |
+
PORT=8080
|
6 |
+
|
7 |
+
if lsof -Pi :$PORT -sTCP:LISTEN -t >/dev/null ; then
|
8 |
+
echo "running"
|
9 |
+
else
|
10 |
+
./telegramCrise.sh "reiniciando_yolox_linux_192.168.0.153:8080"
|
11 |
+
pkill -f app.py
|
12 |
+
python app.py &
|
13 |
+
echo "not running"
|
14 |
+
fi
|
15 |
+
|
16 |
+
|
checkYoloxGPU.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
export path=/home/atualli/.local/lib/python3.8/site-packages:$PATH
|
3 |
+
cd ~/Projetos/huggingface/yoloxTeste_GPU
|
4 |
+
SERVER=192.168.0.153
|
5 |
+
PORT=8081
|
6 |
+
|
7 |
+
if lsof -Pi :$PORT -sTCP:LISTEN -t >/dev/null ; then
|
8 |
+
echo "running"
|
9 |
+
else
|
10 |
+
./telegramCrise.sh "reiniciando_yolox_GPU_linux_192.168.0.153:8081"
|
11 |
+
pkill -f app1.py
|
12 |
+
python app1.py &
|
13 |
+
echo "not running"
|
14 |
+
fi
|
15 |
+
|
16 |
+
|
configs/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (156 Bytes). View file
|
|
configs/__pycache__/yolox_s.cpython-38.pyc
ADDED
Binary file (678 Bytes). View file
|
|
dog.jpg
ADDED
flagged/Input Image/tmp6pzjxx_c.jpg
ADDED
flagged/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Input Image,Model Path,Config Path,Image Size,output,flag,username,timestamp
|
2 |
+
/home/atualli/Projetos/huggingface/yoloxTeste/flagged/Input Image/tmp6pzjxx_c.jpg,kadirnar/yolox_m-v0.1.1,configs.yolox_m,640,"{""tensorflow"": [{""classe"": 2, ""nome"": ""car"", ""score"": 0.860845685005188, ""x"": 447.76275634765625, ""y"": 308.4175720214844, ""w"": 496.5997619628906, ""h"": 341.885986328125}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.8513029217720032, ""x"": 765.2677001953125, ""y"": 260.94488525390625, ""w"": 793.2606201171875, ""h"": 283.60516357421875}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.8312921524047852, ""x"": 321.4132385253906, ""y"": 322.1728515625, ""w"": 382.54156494140625, ""h"": 363.3307189941406}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.8271569013595581, ""x"": 834.4190673828125, ""y"": 308.45318603515625, ""w"": 871.917724609375, ""h"": 342.49017333984375}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7965168952941895, ""x"": 759.3472290039062, ""y"": 230.49676513671875, ""w"": 781.9700927734375, ""h"": 248.99917602539062}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7932999730110168, ""x"": 719.6497802734375, ""y"": 244.84173583984375, ""w"": 745.8082275390625, ""h"": 270.5390625}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7723492383956909, ""x"": 701.7979736328125, ""y"": 234.0062713623047, ""w"": 722.4508666992188, ""h"": 252.4764404296875}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7704324722290039, ""x"": 382.4598693847656, ""y"": 279.06915283203125, ""w"": 418.82550048828125, ""h"": 304.0396728515625}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7000134587287903, ""x"": 605.7061157226562, ""y"": 239.3345489501953, ""w"": 627.9799194335938, ""h"": 260.09014892578125}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5757092833518982, ""x"": 564.4542236328125, ""y"": 242.128662109375, ""w"": 588.6491088867188, ""h"": 261.0116882324219}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5525237321853638, ""x"": 522.3496704101562, ""y"": 223.98187255859375, ""w"": 545.0501708984375, ""h"": 242.4897918701172}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5518915057182312, ""x"": 620.4938354492188, ""y"": 203.78976440429688, ""w"": 641.4959716796875, ""h"": 218.98069763183594}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5461263060569763, ""x"": 542.865478515625, ""y"": 234.36563110351562, ""w"": 564.4718017578125, ""h"": 251.56809997558594}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.4599595367908478, ""x"": 784.028564453125, ""y"": 205.95413208007812, ""w"": 801.9844360351562, ""h"": 220.2018585205078}]}",,,2023-05-31 15:58:52.416631
|
gradio_cached_examples/18/log.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output,flag,username,timestamp
|
2 |
+
"{""tensorflow"": [{""classe"": 2, ""nome"": ""car"", ""score"": 0.8608458638191223, ""x"": 447.76275634765625, ""y"": 308.4176025390625, ""w"": 496.5997619628906, ""h"": 341.8859558105469}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.8513028621673584, ""x"": 765.2677612304688, ""y"": 260.94488525390625, ""w"": 793.2605590820312, ""h"": 283.60516357421875}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.831292450428009, ""x"": 321.4132080078125, ""y"": 322.1728515625, ""w"": 382.54156494140625, ""h"": 363.3307189941406}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.8271573781967163, ""x"": 834.4190673828125, ""y"": 308.45318603515625, ""w"": 871.917724609375, ""h"": 342.49017333984375}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7965169548988342, ""x"": 759.3472290039062, ""y"": 230.49676513671875, ""w"": 781.9700927734375, ""h"": 248.99917602539062}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7933003306388855, ""x"": 719.6497802734375, ""y"": 244.84173583984375, ""w"": 745.8082275390625, ""h"": 270.5390625}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7723491787910461, ""x"": 701.7979736328125, ""y"": 234.00624084472656, ""w"": 722.4508666992188, ""h"": 252.47640991210938}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7704328298568726, ""x"": 382.4598693847656, ""y"": 279.06915283203125, ""w"": 418.82550048828125, ""h"": 304.0396728515625}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.7000138163566589, ""x"": 605.7061157226562, ""y"": 239.33457946777344, ""w"": 627.9799194335938, ""h"": 260.0901184082031}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5757095813751221, ""x"": 564.4542236328125, ""y"": 242.12869262695312, ""w"": 588.6491088867188, ""h"": 261.0116882324219}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5525237917900085, ""x"": 522.349609375, ""y"": 223.98187255859375, ""w"": 545.0501708984375, ""h"": 242.4897918701172}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.551891028881073, ""x"": 620.4938354492188, ""y"": 203.78976440429688, ""w"": 641.4959716796875, ""h"": 218.98069763183594}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5461264848709106, ""x"": 542.865478515625, ""y"": 234.36563110351562, ""w"": 564.4718017578125, ""h"": 251.56809997558594}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.45995888113975525, ""x"": 784.028564453125, ""y"": 205.9541473388672, ""w"": 801.9844360351562, ""h"": 220.20187377929688}]}",,,2023-04-13 16:46:28.037880
|
3 |
+
"{""tensorflow"": [{""classe"": 0, ""nome"": ""person"", ""score"": 0.9197103977203369, ""x"": 747.2991943359375, ""y"": 39.6729736328125, ""w"": 1156.5845947265625, ""h"": 714.814208984375}, {""classe"": 0, ""nome"": ""person"", ""score"": 0.9082562923431396, ""x"": 128.46322631835938, ""y"": 200.10345458984375, ""w"": 1030.4034423828125, ""h"": 714.0289306640625}, {""classe"": 27, ""nome"": ""tie"", ""score"": 0.7234686017036438, ""x"": 443.7471618652344, ""y"": 435.0652160644531, ""w"": 513.2925415039062, ""h"": 719.4329833984375}]}",,,2023-04-13 16:46:28.591237
|
4 |
+
"{""tensorflow"": [{""classe"": 1, ""nome"": ""bicycle"", ""score"": 0.9545491933822632, ""x"": 124.5152359008789, ""y"": 118.99075317382812, ""w"": 560.3104858398438, ""h"": 421.1612243652344}, {""classe"": 16, ""nome"": ""dog"", ""score"": 0.913137674331665, ""x"": 134.3090057373047, ""y"": 222.82565307617188, ""w"": 310.2258605957031, ""h"": 549.6795654296875}, {""classe"": 7, ""nome"": ""truck"", ""score"": 0.6118963956832886, ""x"": 462.951904296875, ""y"": 76.86576080322266, ""w"": 694.227783203125, ""h"": 171.76158142089844}, {""classe"": 2, ""nome"": ""car"", ""score"": 0.5663586854934692, ""x"": 466.28363037109375, ""y"": 74.01171112060547, ""w"": 691.0263061523438, ""h"": 174.1538543701172}, {""classe"": 58, ""nome"": ""potted plant"", ""score"": 0.43877777457237244, ""x"": 684.2461547851562, ""y"": 110.87194061279297, ""w"": 716.3640747070312, ""h"": 153.87451171875}]}",,,2023-04-13 16:46:28.855355
|
small-vehicles1.jpeg
ADDED
telegramCrise.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
curl -X POST "https://api.telegram.org/bot766543741:AAE0oO_ni_QYkfS8tZxC-VZt0RJztFiZNHc/sendMessage?chat_id=-927074982&text=$1"
|
yoloxdetect2/__pycache__/helpers.cpython-38.pyc
ADDED
Binary file (2.71 kB). View file
|
|
zidane.jpg
ADDED