Spaces:
Build error
Build error
Mauricio Guerta
commited on
Commit
•
34f0f30
1
Parent(s):
ca4567f
Simplifica script
Browse files
app.py
CHANGED
@@ -1,48 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
#os.system("pip -qq install yoloxdetect==0.0.7")
|
4 |
-
#os.system("pip -qq install yoloxdetect")
|
5 |
import torch
|
6 |
import json
|
7 |
import yoloxdetect2.helpers as yoloxdetect
|
8 |
-
#from yoloxdetect import YoloxDetector
|
9 |
-
|
10 |
-
|
11 |
-
# Images
|
12 |
-
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
13 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
14 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Megvii-BaseDetection/YOLOX/main/assets/dog.jpg', 'dog.jpg')
|
15 |
|
16 |
model = yoloxdetect.YoloxDetector2('kadirnar/yolox_s-v0.1.1', 'configs.yolox_s', device="cpu", hf_model=True)
|
|
|
17 |
|
18 |
def yolox_inference(
|
19 |
image_path: gr.inputs.Image = None,
|
20 |
-
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
|
21 |
-
config_path: gr.inputs.Textbox = 'configs.yolox_s',
|
22 |
-
image_size: gr.inputs.Slider = 640
|
23 |
):
|
24 |
"""
|
25 |
YOLOX inference function
|
26 |
Args:
|
27 |
image: Input image
|
28 |
-
model_path: Path to the model
|
29 |
-
config_path: Path to the config file
|
30 |
-
image_size: Image size
|
31 |
Returns:
|
32 |
Rendered image
|
33 |
"""
|
34 |
|
35 |
-
#model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True)
|
36 |
-
#pred = model.predict(image_path=image_path, image_size=image_size)
|
37 |
pred2 = []
|
38 |
if model :
|
39 |
model.torchyolo = True
|
40 |
pred2 = model.predict(image_path=image_path, image_size=image_size)
|
41 |
-
#text = "Ola"
|
42 |
-
#print (vars(model))
|
43 |
-
#print (pred2[0])
|
44 |
-
#print (pred2[1])
|
45 |
-
#print (pred2[2])
|
46 |
|
47 |
|
48 |
tensor = {
|
@@ -51,7 +30,6 @@ def yolox_inference(
|
|
51 |
}
|
52 |
|
53 |
if pred2 is not None:
|
54 |
-
#print (pred2[3])
|
55 |
for i, element in enumerate(pred2[0]):
|
56 |
object = {}
|
57 |
itemclass = round(pred2[2][i].item())
|
@@ -64,7 +42,6 @@ def yolox_inference(
|
|
64 |
object["h"] = element[3].item()
|
65 |
tensor["tensorflow"].append(object)
|
66 |
|
67 |
-
#print(tensor)
|
68 |
|
69 |
text = json.dumps(tensor)
|
70 |
return text
|
@@ -72,18 +49,15 @@ def yolox_inference(
|
|
72 |
|
73 |
inputs = [
|
74 |
gr.inputs.Image(type="filepath", label="Input Image"),
|
75 |
-
gr.inputs.Textbox(lines=1, label="Model Path", default="kadirnar/yolox_s-v0.1.1"),
|
76 |
-
gr.inputs.Textbox(lines=1, label="Config Path", default="configs.yolox_s"),
|
77 |
-
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
78 |
]
|
79 |
|
80 |
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
81 |
title = "SIMULADOR PARA RECONHECIMENTO DE IMAGEM"
|
82 |
|
83 |
examples = [
|
84 |
-
["small-vehicles1.jpeg"
|
85 |
-
["zidane.jpg"
|
86 |
-
["dog.jpg"
|
87 |
]
|
88 |
|
89 |
demo_app = gr.Interface(
|
@@ -94,7 +68,6 @@ demo_app = gr.Interface(
|
|
94 |
examples=examples,
|
95 |
cache_examples=True,
|
96 |
live=True,
|
97 |
-
theme='huggingface',
|
98 |
)
|
99 |
demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8080, enable_queue=True)
|
100 |
#demo_app.launch(debug=True, server_port=8083, enable_queue=True)
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
3 |
import torch
|
4 |
import json
|
5 |
import yoloxdetect2.helpers as yoloxdetect
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
model = yoloxdetect.YoloxDetector2('kadirnar/yolox_s-v0.1.1', 'configs.yolox_s', device="cpu", hf_model=True)
|
8 |
+
image_size = 640
|
9 |
|
10 |
def yolox_inference(
|
11 |
image_path: gr.inputs.Image = None,
|
|
|
|
|
|
|
12 |
):
|
13 |
"""
|
14 |
YOLOX inference function
|
15 |
Args:
|
16 |
image: Input image
|
|
|
|
|
|
|
17 |
Returns:
|
18 |
Rendered image
|
19 |
"""
|
20 |
|
|
|
|
|
21 |
pred2 = []
|
22 |
if model :
|
23 |
model.torchyolo = True
|
24 |
pred2 = model.predict(image_path=image_path, image_size=image_size)
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
tensor = {
|
|
|
30 |
}
|
31 |
|
32 |
if pred2 is not None:
|
|
|
33 |
for i, element in enumerate(pred2[0]):
|
34 |
object = {}
|
35 |
itemclass = round(pred2[2][i].item())
|
|
|
42 |
object["h"] = element[3].item()
|
43 |
tensor["tensorflow"].append(object)
|
44 |
|
|
|
45 |
|
46 |
text = json.dumps(tensor)
|
47 |
return text
|
|
|
49 |
|
50 |
inputs = [
|
51 |
gr.inputs.Image(type="filepath", label="Input Image"),
|
|
|
|
|
|
|
52 |
]
|
53 |
|
54 |
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
55 |
title = "SIMULADOR PARA RECONHECIMENTO DE IMAGEM"
|
56 |
|
57 |
examples = [
|
58 |
+
["small-vehicles1.jpeg"],
|
59 |
+
["zidane.jpg"],
|
60 |
+
["dog.jpg"],
|
61 |
]
|
62 |
|
63 |
demo_app = gr.Interface(
|
|
|
68 |
examples=examples,
|
69 |
cache_examples=True,
|
70 |
live=True,
|
|
|
71 |
)
|
72 |
demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8080, enable_queue=True)
|
73 |
#demo_app.launch(debug=True, server_port=8083, enable_queue=True)
|
configs/__pycache__/__init__.cpython-38.pyc
CHANGED
Binary files a/configs/__pycache__/__init__.cpython-38.pyc and b/configs/__pycache__/__init__.cpython-38.pyc differ
|
|
configs/__pycache__/yolox_s.cpython-38.pyc
CHANGED
Binary files a/configs/__pycache__/yolox_s.cpython-38.pyc and b/configs/__pycache__/yolox_s.cpython-38.pyc differ
|
|
yoloxdetect2/__pycache__/helpers.cpython-38.pyc
CHANGED
Binary files a/yoloxdetect2/__pycache__/helpers.cpython-38.pyc and b/yoloxdetect2/__pycache__/helpers.cpython-38.pyc differ
|
|
yoloxdetect2/utils/__pycache__/downloads.cpython-38.pyc
CHANGED
Binary files a/yoloxdetect2/utils/__pycache__/downloads.cpython-38.pyc and b/yoloxdetect2/utils/__pycache__/downloads.cpython-38.pyc differ
|
|