Spaces:
Build error
Build error
import gradio as gr | |
import os | |
#os.system("pip -qq install yoloxdetect==0.0.7") | |
#os.system("pip -qq install yoloxdetect") | |
import torch | |
import json | |
import yoloxdetect2.helpers as yoloxdetect | |
#from yoloxdetect import YoloxDetector | |
# Images | |
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Megvii-BaseDetection/YOLOX/main/assets/dog.jpg', 'dog.jpg') | |
model = yoloxdetect.YoloxDetector2('kadirnar/yolox_s-v0.1.1', 'configs.yolox_s', device="cpu", hf_model=True) | |
def yolox_inference( | |
image_path: gr.inputs.Image = None, | |
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1', | |
config_path: gr.inputs.Textbox = 'configs.yolox_s', | |
image_size: gr.inputs.Slider = 640 | |
): | |
""" | |
YOLOX inference function | |
Args: | |
image: Input image | |
model_path: Path to the model | |
config_path: Path to the config file | |
image_size: Image size | |
Returns: | |
Rendered image | |
""" | |
#model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True) | |
#pred = model.predict(image_path=image_path, image_size=image_size) | |
pred2 = [] | |
if model : | |
model.torchyolo = True | |
pred2 = model.predict(image_path=image_path, image_size=image_size) | |
#text = "Ola" | |
#print (vars(model)) | |
#print (pred2[0]) | |
#print (pred2[1]) | |
#print (pred2[2]) | |
tensor = { | |
"tensorflow": [ | |
] | |
} | |
if pred2 is not None: | |
#print (pred2[3]) | |
for i, element in enumerate(pred2[0]): | |
object = {} | |
itemclass = round(pred2[2][i].item()) | |
object["classe"] = itemclass | |
object["nome"] = pred2[3][itemclass] | |
object["score"] = pred2[1][i].item() | |
object["x"] = element[0].item() | |
object["y"] = element[1].item() | |
object["w"] = element[2].item() | |
object["h"] = element[3].item() | |
tensor["tensorflow"].append(object) | |
#print(tensor) | |
text = json.dumps(tensor) | |
return text | |
inputs = [ | |
gr.inputs.Image(type="filepath", label="Input Image"), | |
gr.inputs.Textbox(lines=1, label="Model Path", default="kadirnar/yolox_s-v0.1.1"), | |
gr.inputs.Textbox(lines=1, label="Config Path", default="configs.yolox_s"), | |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
] | |
outputs = gr.outputs.Image(type="filepath", label="Output Image") | |
title = "SIMULADOR PARA RECONHECIMENTO DE IMAGEM" | |
examples = [ | |
["small-vehicles1.jpeg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640], | |
["zidane.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640], | |
["dog.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640], | |
] | |
demo_app = gr.Interface( | |
fn=yolox_inference, | |
inputs=inputs, | |
outputs=["text"], | |
title=title, | |
examples=examples, | |
cache_examples=True, | |
live=True, | |
theme='huggingface', | |
) | |
demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8080, enable_queue=True) | |
#demo_app.launch(debug=True, server_port=8083, enable_queue=True) |