ydshieh
commited on
Commit
•
cd04261
1
Parent(s):
cb8dbda
Update
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
import numpy as np
|
4 |
import os
|
5 |
import requests
|
@@ -9,6 +9,90 @@ from PIL import Image
|
|
9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
10 |
import cv2
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def is_overlapping(rect1, rect2):
|
14 |
x1, y1, x2, y2 = rect1
|
@@ -62,12 +146,20 @@ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
|
62 |
text_offset_original = text_height - base_height
|
63 |
text_spaces = 3
|
64 |
|
|
|
|
|
|
|
|
|
65 |
for entity_name, (start, end), bboxes in entities:
|
66 |
-
|
|
|
|
|
|
|
67 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
|
|
68 |
# draw bbox
|
69 |
# random color
|
70 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
71 |
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
72 |
|
73 |
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
@@ -131,6 +223,12 @@ def main():
|
|
131 |
|
132 |
def generate_predictions(image_input, text_input, do_sample, sampling_topp, sampling_temperature):
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
if text_input == "Brief":
|
135 |
text_input = "<grounding>An image of"
|
136 |
elif text_input == "Detailed":
|
@@ -156,7 +254,29 @@ def main():
|
|
156 |
|
157 |
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=True)
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
term_of_use = """
|
162 |
### Terms of use
|
@@ -191,7 +311,7 @@ def main():
|
|
191 |
label="Generated Description",
|
192 |
combine_adjacent=False,
|
193 |
show_legend=True,
|
194 |
-
).style(color_map=
|
195 |
|
196 |
with gr.Row():
|
197 |
with gr.Column():
|
|
|
1 |
import gradio as gr
|
2 |
+
import random
|
3 |
import numpy as np
|
4 |
import os
|
5 |
import requests
|
|
|
9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
10 |
import cv2
|
11 |
|
12 |
+
colors = [
|
13 |
+
(255, 255, 0),
|
14 |
+
(255, 0, 255),
|
15 |
+
(0, 255, 255),
|
16 |
+
|
17 |
+
(255, 0, 0),
|
18 |
+
(0, 255, 0),
|
19 |
+
(0, 0, 255),
|
20 |
+
|
21 |
+
(255, 128, 0),
|
22 |
+
(255, 0, 128),
|
23 |
+
(0, 255, 128),
|
24 |
+
|
25 |
+
(128, 255, 0),
|
26 |
+
(128, 0, 255),
|
27 |
+
(0, 128, 255),
|
28 |
+
|
29 |
+
(255, 128, 128),
|
30 |
+
(128, 255, 128),
|
31 |
+
(128, 128, 255),
|
32 |
+
|
33 |
+
(128, 255, 255),
|
34 |
+
(255, 128, 255),
|
35 |
+
(255, 255, 128),
|
36 |
+
|
37 |
+
(255, 128, 64),
|
38 |
+
(255, 64, 128),
|
39 |
+
(64, 255, 128),
|
40 |
+
|
41 |
+
(128, 255, 64),
|
42 |
+
(128, 64, 255),
|
43 |
+
(64, 128, 255),
|
44 |
+
|
45 |
+
(255, 64, 64),
|
46 |
+
(64, 255, 64),
|
47 |
+
(64, 64, 255),
|
48 |
+
|
49 |
+
(64, 255, 255),
|
50 |
+
(255, 64, 255),
|
51 |
+
(255, 255, 64),
|
52 |
+
|
53 |
+
(128, 64, 64),
|
54 |
+
(64, 128, 64),
|
55 |
+
(64, 64, 128),
|
56 |
+
|
57 |
+
(64, 128, 128),
|
58 |
+
(128, 64, 128),
|
59 |
+
(128, 128, 64),
|
60 |
+
|
61 |
+
(128, 128, 0),
|
62 |
+
(128, 0, 128),
|
63 |
+
(0, 128, 128),
|
64 |
+
|
65 |
+
(128, 0, 0),
|
66 |
+
(0, 128, 0),
|
67 |
+
(0, 0, 128),
|
68 |
+
|
69 |
+
(64, 64, 0),
|
70 |
+
(64, 0, 64),
|
71 |
+
(0, 64, 64),
|
72 |
+
|
73 |
+
(64, 0, 0),
|
74 |
+
(0, 64, 0),
|
75 |
+
(0, 0, 64),
|
76 |
+
|
77 |
+
(255, 64, 0),
|
78 |
+
(255, 0, 64),
|
79 |
+
(0, 255, 64),
|
80 |
+
|
81 |
+
(64, 255, 0),
|
82 |
+
(64, 0, 255),
|
83 |
+
(0, 64, 255),
|
84 |
+
|
85 |
+
(128, 64, 0),
|
86 |
+
(128, 0, 64),
|
87 |
+
(0, 128, 64),
|
88 |
+
|
89 |
+
(64, 128, 0),
|
90 |
+
(128, 0, 255),
|
91 |
+
(0, 64, 128),
|
92 |
+
]
|
93 |
+
|
94 |
+
color_map = {f"color_id_{color_id}": "red" for color_id, color in enumerate(colors)}
|
95 |
+
|
96 |
|
97 |
def is_overlapping(rect1, rect2):
|
98 |
x1, y1, x2, y2 = rect1
|
|
|
146 |
text_offset_original = text_height - base_height
|
147 |
text_spaces = 3
|
148 |
|
149 |
+
# num_bboxes = sum(len(x[-1]) for x in entities)
|
150 |
+
used_colors = colors # random.sample(colors, k=num_bboxes)
|
151 |
+
|
152 |
+
color_id = -1
|
153 |
for entity_name, (start, end), bboxes in entities:
|
154 |
+
color_id += 1
|
155 |
+
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
156 |
+
if start is None and bbox_id > 0:
|
157 |
+
color_id += 1
|
158 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
159 |
+
|
160 |
# draw bbox
|
161 |
# random color
|
162 |
+
color = used_colors[bbox_id] # tuple(np.random.randint(0, 255, size=3).tolist())
|
163 |
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
164 |
|
165 |
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
|
|
223 |
|
224 |
def generate_predictions(image_input, text_input, do_sample, sampling_topp, sampling_temperature):
|
225 |
|
226 |
+
user_image_path = "/tmp/user_input_test_image.jpg"
|
227 |
+
# This will be of `.jpg` format
|
228 |
+
image_input.save(user_image_path)
|
229 |
+
# This might give different results from the original argument `image_input`
|
230 |
+
image_input = Image.open(user_image_path)
|
231 |
+
|
232 |
if text_input == "Brief":
|
233 |
text_input = "<grounding>An image of"
|
234 |
elif text_input == "Detailed":
|
|
|
254 |
|
255 |
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=True)
|
256 |
|
257 |
+
color_id = -1
|
258 |
+
entity_info = []
|
259 |
+
for entity_name, (start, end), bboxes in entities:
|
260 |
+
color_id += 1
|
261 |
+
for bbox_id, _ in enumerate(bboxes):
|
262 |
+
if start is None and bbox_id > 0:
|
263 |
+
color_id += 1
|
264 |
+
if start is not None:
|
265 |
+
entity_info.append(((start, end), color_id))
|
266 |
+
|
267 |
+
colored_text = []
|
268 |
+
prev_start = 0
|
269 |
+
end = 0
|
270 |
+
for idx, ((start, end), color_id) in enumerate(entity_info):
|
271 |
+
if start > prev_start:
|
272 |
+
colored_text.append((processed_text[prev_start:start], None))
|
273 |
+
colored_text.append((processed_text[start:end], f"color_id_{color_id}"))
|
274 |
+
prev_start = start
|
275 |
+
|
276 |
+
if end < len(processed_text):
|
277 |
+
colored_text.append((processed_text[end:len(processed_text)], None))
|
278 |
+
|
279 |
+
return annotated_image, colored_text
|
280 |
|
281 |
term_of_use = """
|
282 |
### Terms of use
|
|
|
311 |
label="Generated Description",
|
312 |
combine_adjacent=False,
|
313 |
show_legend=True,
|
314 |
+
).style(color_map=color_map)
|
315 |
|
316 |
with gr.Row():
|
317 |
with gr.Column():
|