Spaces:
Sleeping
Sleeping
Restore
Browse files
app.py
CHANGED
@@ -1,164 +1,85 @@
|
|
1 |
import streamlit as st
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
-
import
|
5 |
from dotenv import load_dotenv
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain.schema import Document
|
8 |
-
from langchain_community.llms import HuggingFaceHub
|
9 |
-
from langchain.chains import RetrievalQA
|
10 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
11 |
-
from langchain_community.vectorstores import Chroma
|
12 |
-
from tqdm import tqdm
|
13 |
import random
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
18 |
# Constants
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
model_links = {
|
27 |
"Meta-Llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
28 |
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
29 |
}
|
30 |
|
|
|
31 |
model_info = {
|
32 |
"Meta-Llama-3.1-8B": {
|
33 |
-
|
34 |
-
\nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.**\n"""
|
35 |
-
"logo": "llama_logo.gif",
|
36 |
},
|
37 |
"Mistral-7B-Instruct-v0.3": {
|
38 |
-
|
39 |
-
\nIt was created by
|
40 |
-
"logo": "https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp",
|
41 |
},
|
|
|
|
|
|
|
|
|
42 |
}
|
43 |
|
44 |
# Random dog images for error message
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
with open(file_path, "r") as file:
|
54 |
-
data = json.load(file)
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
]
|
68 |
-
|
69 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
70 |
-
chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP
|
71 |
-
)
|
72 |
-
splits = text_splitter.split_documents(doc_objects)
|
73 |
-
|
74 |
-
return splits
|
75 |
-
except Exception as e:
|
76 |
-
st.error(f"Error loading documents: {str(e)}")
|
77 |
-
return []
|
78 |
-
|
79 |
-
def get_vectorstore(file_path):
|
80 |
-
"""Get or create a vectorstore."""
|
81 |
-
try:
|
82 |
-
if os.path.exists(VECTORSTORE_PATH):
|
83 |
-
print("Loading existing vectorstore...")
|
84 |
-
return Chroma(
|
85 |
-
persist_directory=VECTORSTORE_PATH, embedding_function=embeddings
|
86 |
-
)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
documents=batch,
|
97 |
-
embedding=embeddings,
|
98 |
-
persist_directory=VECTORSTORE_PATH,
|
99 |
-
)
|
100 |
-
else:
|
101 |
-
vectorstore.add_documents(documents=batch)
|
102 |
-
|
103 |
-
vectorstore.persist()
|
104 |
-
return vectorstore
|
105 |
-
except Exception as e:
|
106 |
-
st.error(f"Error creating vectorstore: {str(e)}")
|
107 |
-
return None
|
108 |
-
|
109 |
-
@st.cache_resource(hash_funcs={"builtins.tuple": lambda _: None})
|
110 |
-
def setup_rag_pipeline(file_path, model_name, temperature):
|
111 |
-
"""Set up the RAG pipeline."""
|
112 |
-
try:
|
113 |
-
vectorstore = get_vectorstore(file_path)
|
114 |
-
if vectorstore is None:
|
115 |
-
raise ValueError("Failed to create or load vectorstore.")
|
116 |
-
|
117 |
-
llm = HuggingFaceHub(
|
118 |
-
repo_id=model_links[model_name],
|
119 |
-
model_kwargs={"temperature": temperature, "max_length": 4000},
|
120 |
-
)
|
121 |
-
|
122 |
-
return RetrievalQA.from_chain_type(
|
123 |
-
llm=llm,
|
124 |
-
chain_type="stuff",
|
125 |
-
retriever=vectorstore.as_retriever(search_kwargs={"k": RETRIEVER_K}),
|
126 |
-
return_source_documents=True,
|
127 |
-
)
|
128 |
-
except Exception as e:
|
129 |
-
st.error(f"Error setting up RAG pipeline: {str(e)}")
|
130 |
-
return None
|
131 |
-
|
132 |
-
# Streamlit app
|
133 |
-
st.header("Liahona.AI")
|
134 |
-
|
135 |
-
# Sidebar for model selection
|
136 |
-
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
|
137 |
-
st.markdown(f"_powered_ by ***:violet[{selected_model}]***")
|
138 |
-
|
139 |
-
# Temperature slider
|
140 |
-
temperature = st.sidebar.slider("Select a temperature value", 0.0, 1.0, 0.5)
|
141 |
-
|
142 |
-
# Display model info
|
143 |
-
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
144 |
-
st.sidebar.markdown(model_info[selected_model]["description"])
|
145 |
-
st.sidebar.image(model_info[selected_model]["logo"])
|
146 |
-
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
147 |
-
|
148 |
-
# Initialize chat history
|
149 |
-
if "messages" not in st.session_state:
|
150 |
-
st.session_state.messages = []
|
151 |
-
|
152 |
-
# Display chat messages from history
|
153 |
-
for message in st.session_state.messages:
|
154 |
-
with st.chat_message(message["role"]):
|
155 |
-
st.markdown(message["content"])
|
156 |
-
|
157 |
-
# Set up advanced RAG pipeline
|
158 |
-
qa_chain = setup_rag_pipeline("index_training.json", selected_model, temperature)
|
159 |
-
|
160 |
-
# Chat input
|
161 |
-
if prompt := st.chat_input("Type message here..."):
|
162 |
# Display user message
|
163 |
with st.chat_message("user"):
|
164 |
st.markdown(prompt)
|
@@ -167,21 +88,35 @@ if prompt := st.chat_input("Type message here..."):
|
|
167 |
# Generate and display assistant response
|
168 |
with st.chat_message("assistant"):
|
169 |
try:
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
177 |
except Exception as e:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
+
import numpy as np
|
5 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import random
|
7 |
|
8 |
# Load environment variables
|
9 |
load_dotenv()
|
10 |
|
11 |
# Constants
|
12 |
+
MAX_TOKENS = 4000
|
13 |
+
DEFAULT_TEMPERATURE = 0.5
|
14 |
+
|
15 |
+
# Initialize the client
|
16 |
+
def initialize_client():
|
17 |
+
api_key = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
|
18 |
+
if not api_key:
|
19 |
+
st.error("HUGGINGFACEHUB_API_TOKEN not found in environment variables.")
|
20 |
+
st.stop()
|
21 |
+
return OpenAI(
|
22 |
+
base_url="https://api-inference.huggingface.co/v1",
|
23 |
+
api_key=api_key
|
24 |
+
)
|
25 |
+
|
26 |
+
# Create supported models
|
27 |
model_links = {
|
28 |
"Meta-Llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
29 |
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
|
30 |
+
"Gemma-7b-it": "google/gemma-7b-it",
|
31 |
}
|
32 |
|
33 |
+
# Pull info about the model to display
|
34 |
model_info = {
|
35 |
"Meta-Llama-3.1-8B": {
|
36 |
+
'description': """The Llama (3.1) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.
|
37 |
+
\nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.**\n"""
|
|
|
38 |
},
|
39 |
"Mistral-7B-Instruct-v0.3": {
|
40 |
+
'description': """The Mistral-7B-Instruct-v0.3 is an instruct-tuned version of Mistral-7B.
|
41 |
+
\nIt was created by [**Mistral AI**](https://mistral.ai/) and has **7 billion parameters.**\n"""
|
|
|
42 |
},
|
43 |
+
"Gemma-7b-it": {
|
44 |
+
'description': """Gemma is a family of lightweight, state-of-the-art open models from Google.
|
45 |
+
\nThe 7B-it variant is instruction-tuned and has **7 billion parameters.**\n"""
|
46 |
+
}
|
47 |
}
|
48 |
|
49 |
# Random dog images for error message
|
50 |
+
random_dog_images = ["BlueLogoBox.jpg", "RandomDog1.jpg", "RandomDog2.jpg"]
|
51 |
|
52 |
+
def main():
|
53 |
+
st.header('Liahona.AI')
|
54 |
|
55 |
+
# Sidebar for model selection and temperature
|
56 |
+
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
|
57 |
+
temperature = st.sidebar.slider('Select a temperature value', 0.0, 1.0, DEFAULT_TEMPERATURE)
|
|
|
|
|
58 |
|
59 |
+
st.markdown(f'_powered_ by ***:violet[{selected_model}]***')
|
60 |
|
61 |
+
# Display model info
|
62 |
+
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
63 |
+
st.sidebar.markdown(model_info[selected_model]['description'])
|
64 |
+
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
65 |
|
66 |
+
# Initialize chat history
|
67 |
+
if "messages" not in st.session_state:
|
68 |
+
st.session_state.messages = []
|
69 |
+
|
70 |
+
# Display chat messages from history on app rerun
|
71 |
+
for message in st.session_state.messages:
|
72 |
+
with st.chat_message(message["role"]):
|
73 |
+
st.markdown(message["content"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# Initialize client
|
76 |
+
client = initialize_client()
|
77 |
+
|
78 |
+
# Chat input and response
|
79 |
+
if prompt := st.chat_input("Type message here..."):
|
80 |
+
process_user_input(client, prompt, selected_model, temperature)
|
81 |
+
|
82 |
+
def process_user_input(client, prompt, selected_model, temperature):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
# Display user message
|
84 |
with st.chat_message("user"):
|
85 |
st.markdown(prompt)
|
|
|
88 |
# Generate and display assistant response
|
89 |
with st.chat_message("assistant"):
|
90 |
try:
|
91 |
+
stream = client.chat.completions.create(
|
92 |
+
model=model_links[selected_model],
|
93 |
+
messages=[
|
94 |
+
{"role": m["role"], "content": m["content"]}
|
95 |
+
for m in st.session_state.messages
|
96 |
+
],
|
97 |
+
temperature=temperature,
|
98 |
+
stream=True,
|
99 |
+
max_tokens=MAX_TOKENS,
|
100 |
+
)
|
101 |
+
response = st.write_stream(stream)
|
102 |
except Exception as e:
|
103 |
+
handle_error(e)
|
104 |
+
return
|
105 |
+
|
106 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
107 |
+
|
108 |
+
def handle_error(error):
|
109 |
+
response = """😵💫 Looks like someone unplugged something!
|
110 |
+
\n Either the model space is being updated or something is down.
|
111 |
+
\n
|
112 |
+
\n Try again later.
|
113 |
+
\n
|
114 |
+
\n Here's a random pic of a 🐶:"""
|
115 |
+
st.write(response)
|
116 |
+
random_dog_pick = random.choice(random_dog_images)
|
117 |
+
st.image(random_dog_pick)
|
118 |
+
st.write("This was the error message:")
|
119 |
+
st.write(str(error))
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
main()
|