|
import torch |
|
from torch.utils.tensorboard import SummaryWriter |
|
from torch.utils.data import DataLoader |
|
import numpy as np |
|
from sklearn.metrics import * |
|
from omegaconf import OmegaConf |
|
import os |
|
import random |
|
|
|
from mcts import MCTS |
|
import esm |
|
from encoders import AptaBLE |
|
from utils import get_scores, API_Dataset, get_nt_esm_dataset, rna2vec |
|
from accelerate import Accelerator |
|
import glob |
|
import os |
|
import requests |
|
|
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
|
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
class AptaBLE_Pipeline(): |
|
"""In-house API prediction score pipeline.""" |
|
def __init__(self, lr, dropout, weight_decay, epochs, model_type, model_version, model_save_path, accelerate_save_path, tensorboard_logdir, *args, **kwargs): |
|
self.device = accelerator.device |
|
self.lr = lr |
|
self.weight_decay = weight_decay |
|
self.epochs = epochs |
|
self.model_type = model_type |
|
self.model_version = model_version |
|
self.model_save_path = model_save_path |
|
self.accelerate_save_path = accelerate_save_path |
|
self.tensorboard_logdir = tensorboard_logdir |
|
esm_prot_encoder, self.esm_alphabet = esm.pretrained.esm.pretrained.esm2_t33_650M_UR50D() |
|
|
|
|
|
for name, param in esm_prot_encoder.named_parameters(): |
|
param.requires_grad = False |
|
for name, param in esm_prot_encoder.named_parameters(): |
|
if "layers.30" in name or "layers.31" in name or "layers.32" in name: |
|
param.requires_grad = True |
|
|
|
self.batch_converter = self.esm_alphabet.get_batch_converter(truncation_seq_length=1678) |
|
|
|
|
|
|
|
self.nt_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-v2-50m-multi-species", trust_remote_code=True) |
|
nt_encoder = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-v2-50m-multi-species", trust_remote_code=True) |
|
|
|
self.model = AptaBLE( |
|
apta_encoder=nt_encoder, |
|
prot_encoder=esm_prot_encoder, |
|
dropout=dropout, |
|
).to(self.device) |
|
|
|
self.criterion = torch.nn.BCELoss().to(self.device) |
|
|
|
|
|
def train(self): |
|
print('Training the model!') |
|
|
|
|
|
writer = SummaryWriter(log_dir=f"log/{self.model_type}/{self.model_version}") |
|
|
|
|
|
self.early_stopper = EarlyStopper(3, 3) |
|
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) |
|
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, [4, 7, 10], 0.1) |
|
|
|
|
|
|
|
self.model, self.optimizer, self.train_loader, self.test_loader, self.bench_loader, self.scheduler = accelerator.prepare(self.model, self.optimizer, self.train_loader, self.test_loader, self.bench_loader, self.scheduler) |
|
best_loss = 100 |
|
|
|
for epoch in range(1, self.epochs+1): |
|
self.model.train() |
|
loss_train, _, _ = self.batch_step(self.train_loader, train_mode=True) |
|
self.model.eval() |
|
self.scheduler.step() |
|
with torch.no_grad(): |
|
loss_test, pred_test, target_test = self.batch_step(self.test_loader, train_mode=False) |
|
test_scores = get_scores(target_test, pred_test) |
|
print("\tTrain Loss: {: .6f}\tTest Loss: {: .6f}\tTest ACC: {:.6f}\tTest AUC: {:.6f}\tTest MCC: {:.6f}\tTest PR_AUC: {:.6f}\tF1: {:.6f}\n".format(loss_train ,loss_test, test_scores['acc'], test_scores['roc_auc'], test_scores['mcc'], test_scores['pr_auc'], test_scores['f1'])) |
|
|
|
|
|
|
|
|
|
|
|
if epoch > 2: |
|
with torch.no_grad(): |
|
loss_bench, pred_bench, target_bench = self.batch_step(self.bench_loader, train_mode=False) |
|
bench_scores = get_scores(target_bench, pred_bench) |
|
print("\Bench Loss: {: .6f}\Bench ACC: {:.6f}\Bench AUC: {:.6f}\tBench MCC: {:.6f}\tBench PR_AUC: {:.6f}\tBench F1: {:.6f}\n".format(loss_bench, bench_scores['acc'], bench_scores['roc_auc'], bench_scores['mcc'], bench_scores['pr_auc'], bench_scores['f1'])) |
|
writer.add_scalar("Loss/bench", loss_bench, epoch) |
|
for k, v in bench_scores.items(): |
|
if isinstance(v, float): |
|
writer.add_scalar(f'{k}/bench', bench_scores[k], epoch) |
|
|
|
|
|
if bench_scores['mcc'] > 0.5 and test_scores['mcc'] > 0.5 and loss_bench < 0.9 and accelerator.is_main_process: |
|
best_loss = loss_test |
|
|
|
|
|
|
|
accelerator.save_state(self.accelerate_save_path) |
|
model = accelerator.unwrap_model(self.model) |
|
torch.save(model.state_dict(), f'{self.model_save_path}/model_epoch={epoch}.pt') |
|
print(f'Model saved at {self.model_save_path}') |
|
print(f'Accelerate statistics saved at {self.accelerate_save_path}!') |
|
|
|
|
|
writer.add_scalar("Loss/train", loss_train, epoch) |
|
writer.add_scalar("Loss/test", loss_test, epoch) |
|
for k, v in test_scores.items(): |
|
if isinstance(v, float): |
|
writer.add_scalar(f'{k}/test', test_scores[k], epoch) |
|
|
|
print("Training finished | access tensorboard via 'tensorboard --logdir=runs'.") |
|
writer.flush() |
|
writer.close() |
|
|
|
def batch_step(self, loader, train_mode = True): |
|
loss_total = 0 |
|
pred = np.array([]) |
|
target = np.array([]) |
|
for batch_idx, (apta, esm_prot, y, apta_attn, prot_attn) in enumerate(loader): |
|
if train_mode: |
|
self.optimizer.zero_grad() |
|
|
|
y_pred = self.predict(apta, esm_prot, apta_attn, prot_attn) |
|
y_true = torch.tensor(y, dtype=torch.float32).to(self.device) |
|
loss = self.criterion(torch.flatten(y_pred), y_true) |
|
|
|
if train_mode: |
|
accelerator.backward(loss) |
|
self.optimizer.step() |
|
|
|
loss_total += loss.item() |
|
|
|
pred = np.append(pred, torch.flatten(y_pred).clone().detach().cpu().numpy()) |
|
target = np.append(target, torch.flatten(y_true).clone().detach().cpu().numpy()) |
|
mode = 'train' if train_mode else 'eval' |
|
print(mode + "[{}/{}({:.0f}%)]".format(batch_idx, len(loader), 100. * batch_idx / len(loader)), end = "\r", flush=True) |
|
loss_total /= len(loader) |
|
return loss_total, pred, target |
|
|
|
def predict(self, apta, esm_prot, apta_attn, prot_attn): |
|
y_pred, _, _, _ = self.model(apta, esm_prot, apta_attn, prot_attn) |
|
return y_pred |
|
|
|
def inference(self, apta, prot, labels): |
|
"""Perform inference on a batch of aptamer/protein pairs.""" |
|
self.model.eval() |
|
|
|
max_length = 275 |
|
|
|
inputs = [(i, j) for i, j in zip(labels, prot)] |
|
_, _, prot_tokens = self.batch_converter(inputs) |
|
apta_toks = self.nt_tokenizer.batch_encode_plus(apta, return_tensors='pt', padding='max_length', max_length=max_length)['input_ids'] |
|
apta_attention_mask = apta_toks != self.nt_tokenizer.pad_token_id |
|
|
|
|
|
prot_tokenized = prot_tokens[:, :1680] |
|
|
|
prot_ex = torch.ones((prot_tokenized.shape[0], 1680), dtype=torch.int64)*self.esm_alphabet.padding_idx |
|
prot_ex[:, :prot_tokenized.shape[1]] = prot_tokenized |
|
prot_attention_mask = prot_ex != self.esm_alphabet.padding_idx |
|
|
|
loader = DataLoader(API_Dataset(apta_toks, prot_ex, labels, apta_attention_mask, prot_attention_mask), batch_size=1, shuffle=False) |
|
|
|
self.model, loader = accelerator.prepare(self.model, loader) |
|
with torch.no_grad(): |
|
_, pred, _ = self.batch_step(loader, train_mode=False) |
|
|
|
return pred |
|
|
|
def recommend(self, target, n_aptamers, depth, iteration, verbose=True): |
|
|
|
candidates = [] |
|
_, _, prot_tokens = self.batch_converter([(1, target)]) |
|
prot_tokenized = torch.tensor(prot_tokens, dtype=torch.int64) |
|
|
|
encoded_targetprotein = torch.ones((prot_tokenized.shape[0], 1678), dtype=torch.int64)*self.esm_alphabet.padding_idx |
|
encoded_targetprotein[:, :prot_tokenized.shape[1]] = prot_tokenized |
|
encoded_targetprotein = encoded_targetprotein.to(self.device) |
|
|
|
mcts = MCTS(encoded_targetprotein, depth=depth, iteration=iteration, states=8, target_protein=target, device=self.device, esm_alphabet=self.esm_alphabet) |
|
|
|
for _ in range(n_aptamers): |
|
mcts.make_candidate(self.model) |
|
candidates.append(mcts.get_candidate()) |
|
|
|
self.model.eval() |
|
with torch.no_grad(): |
|
sim_seq = np.array([mcts.get_candidate()]) |
|
print('first candidate: ', sim_seq) |
|
|
|
apta = self.nt_tokenizer.batch_encode_plus(sim_seq, return_tensors='pt', padding='max_length', max_length=275)['input_ids'] |
|
apta_attn = apta != self.nt_tokenizer.pad_token_id |
|
prot_attn = encoded_targetprotein != self.esm_alphabet.padding_idx |
|
score, _, _, _ = self.model(apta.to(self.device), encoded_targetprotein.to(self.device), apta_attn.to(self.device), prot_attn.to(self.device)) |
|
|
|
if verbose: |
|
candidate = mcts.get_candidate() |
|
print("candidate:\t", candidate, "\tscore:\t", score) |
|
print("*"*80) |
|
mcts.reset() |
|
|
|
def set_data_for_training(self, filepath, batch_size): |
|
|
|
ds_train, ds_test, ds_bench = get_nt_esm_dataset(filepath, self.nt_tokenizer, self.batch_converter, self.esm_alphabet) |
|
|
|
self.train_loader = DataLoader(API_Dataset(ds_train[0], ds_train[1], ds_train[2], ds_train[3], ds_train[4]), batch_size=batch_size, shuffle=True) |
|
self.test_loader = DataLoader(API_Dataset(ds_test[0], ds_test[1], ds_test[2], ds_test[3], ds_test[4]), batch_size=batch_size, shuffle=False) |
|
self.bench_loader = DataLoader(API_Dataset(ds_bench[0], ds_bench[1], ds_bench[2], ds_bench[3], ds_bench[4]), batch_size=batch_size, shuffle=False) |
|
|
|
class EarlyStopper: |
|
def __init__(self, patience=1, min_delta=0): |
|
self.patience = patience |
|
self.min_delta = min_delta |
|
self.counter = 0 |
|
self.min_validation_loss = float('inf') |
|
|
|
def early_stop(self, validation_loss): |
|
if validation_loss < self.min_validation_loss: |
|
self.min_validation_loss = validation_loss |
|
self.counter = 0 |
|
elif validation_loss > (self.min_validation_loss + self.min_delta): |
|
self.counter += 1 |
|
if self.counter >= self.patience: |
|
return True |
|
return False |
|
|
|
def seed_torch(seed=5471): |
|
random.seed(seed) |
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cudnn.deterministic = True |
|
|
|
def main(): |
|
conf = OmegaConf.load('config.yaml') |
|
hyperparameters = conf.hyperparameters |
|
logging = conf.logging |
|
|
|
lr = hyperparameters['lr'] |
|
wd = hyperparameters['weight_decay'] |
|
dropout = hyperparameters['dropout'] |
|
batch_size = hyperparameters['batch_size'] |
|
epochs = hyperparameters['epochs'] |
|
model_type = logging['model_type'] |
|
model_version = logging['model_version'] |
|
model_save_path = logging['model_save_path'] |
|
accelerate_save_path = logging['accelerate_save_path'] |
|
tensorboard_logdir = logging['tensorboard_logdir'] |
|
seed = hyperparameters['seed'] |
|
|
|
if not os.path.exists(model_save_path): |
|
os.makedirs(model_save_path) |
|
|
|
seed_torch(seed=seed) |
|
|
|
pipeline = AptaBLE_Pipeline( |
|
lr=lr, |
|
weight_decay=wd, |
|
epochs=epochs, |
|
model_type=model_type, |
|
model_version=model_version, |
|
model_save_path=model_save_path, |
|
accelerate_save_path=accelerate_save_path, |
|
tensorboard_logdir=tensorboard_logdir, |
|
d_model=128, |
|
d_ff=512, |
|
n_layers=6, |
|
n_heads=8, |
|
dropout=dropout, |
|
load_best_pt=True, |
|
device='cuda', |
|
seed=seed) |
|
|
|
datapath = "./data/ABW_real_dna_aptamers_HC_v6.pkl" |
|
|
|
|
|
pipeline.set_data_for_training(datapath, batch_size=batch_size) |
|
pipeline.train() |
|
|
|
endpoint = 'https://slack.atombioworks.com/hooks/t3y99qu6pi81frhwrhef1849wh' |
|
msg = {"text": "Model has finished training."} |
|
_ = requests.post(endpoint, |
|
json=msg, |
|
headers={"Content-Type": "application/json"}, |
|
) |
|
|
|
return |
|
|
|
if __name__ == "__main__": |
|
|
|
main() |
|
|