|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils.weight_norm import weight_norm |
|
import math |
|
import numpy as np |
|
|
|
class cross_attn_block(nn.Module): |
|
def __init__(self, embed_dim, n_heads, dropout): |
|
super().__init__() |
|
self.heads = n_heads |
|
self.mha = nn.MultiheadAttention(embed_dim, n_heads, dropout, batch_first=True) |
|
self.ln_apt = nn.LayerNorm(embed_dim) |
|
self.ln_prot = nn.LayerNorm(embed_dim) |
|
self.ln_out = nn.LayerNorm(embed_dim) |
|
self.linear = nn.Linear(embed_dim, embed_dim) |
|
|
|
def forward(self, embeddings_x, embeddings_y, x_t, y_t): |
|
|
|
|
|
attn_mask = generate_3d_mask(y_t, x_t, self.heads) |
|
|
|
|
|
embeddings_x_n = self.ln_apt(embeddings_x) |
|
embeddings_y_n = self.ln_prot(embeddings_y) |
|
|
|
|
|
reps = embeddings_y + self.mha(embeddings_y_n, embeddings_x_n, embeddings_x_n, attn_mask=attn_mask)[0] |
|
return reps + self.linear(self.ln_out(reps)) |
|
|
|
class self_attn_block(nn.Module): |
|
def __init__(self, d_embed, heads, dropout): |
|
super().__init__() |
|
|
|
self.heads = heads |
|
self.ln1 = nn.LayerNorm(d_embed) |
|
self.ln2 = nn.LayerNorm(d_embed) |
|
self.mha = nn.MultiheadAttention(d_embed, self.heads, dropout, batch_first=True) |
|
self.linear = nn.Linear(d_embed, d_embed) |
|
|
|
def forward(self, embeddings_x, x_t): |
|
|
|
|
|
|
|
|
|
embeddings_x_n = self.ln1(embeddings_x) |
|
reps = embeddings_x + self.mha(embeddings_x_n, embeddings_x_n, embeddings_x_n, key_padding_mask=~x_t)[0] |
|
return reps + self.linear(self.ln2(reps)) |
|
|
|
|
|
class AptaBLE(nn.Module): |
|
def __init__(self, apta_encoder, prot_encoder, dropout): |
|
super(AptaBLE, self).__init__() |
|
|
|
|
|
self.apta_encoder = apta_encoder |
|
self.prot_encoder = prot_encoder |
|
|
|
self.flatten = nn.Flatten() |
|
self.prot_reshape = nn.Linear(1280, 512) |
|
self.apta_keep = nn.Linear(512, 512) |
|
|
|
self.l1 = nn.Linear(1024, 1024) |
|
self.l2 = nn.Linear(1024, 512) |
|
self.l3 = nn.Linear(512, 256) |
|
self.l4 = nn.Linear(256, 1) |
|
self.can = CAN(512, 8, 1, 'mean_all_tok') |
|
self.bn1 = nn.BatchNorm1d(1024) |
|
self.bn2 = nn.BatchNorm1d(512) |
|
self.bn3 = nn.BatchNorm1d(256) |
|
self.relu = nn.ReLU() |
|
|
|
|
|
|
|
def forward(self, apta_in, esm_prot, apta_attn, prot_attn): |
|
apta = self.apta_encoder(apta_in, apta_attn, apta_attn, output_hidden_states=True)['hidden_states'][-1] |
|
|
|
prot = self.prot_encoder(esm_prot, repr_layers=[33], return_contacts=False)['representations'][33] |
|
|
|
prot = self.prot_reshape(prot) |
|
apta = self.apta_keep(apta) |
|
|
|
output, cross_map, prot_map, apta_map = self.can(prot, apta, prot_attn, apta_attn) |
|
output = self.relu(self.l1(output)) |
|
output = self.bn1(output) |
|
output = self.relu(self.l2(output)) |
|
output = self.bn2(output) |
|
output = self.relu(self.l3(output)) |
|
output = self.bn3(output) |
|
output = self.l4(output) |
|
output = torch.sigmoid(output) |
|
|
|
return output, cross_map, prot_map, apta_map |
|
|
|
def find_opt_threshold(target, pred): |
|
result = 0 |
|
best = 0 |
|
|
|
for i in range(0, 1000): |
|
pred_threshold = np.where(pred > i/1000, 1, 0) |
|
now = f1_score(target, pred_threshold) |
|
if now > best: |
|
result = i/1000 |
|
best = now |
|
|
|
return result |
|
|
|
def argument_seqset(seqset): |
|
arg_seqset = [] |
|
for s, ss in seqset: |
|
arg_seqset.append([s, ss]) |
|
|
|
arg_seqset.append([s[::-1], ss[::-1]]) |
|
|
|
return arg_seqset |
|
|
|
def augment_apis(apta, prot, ys): |
|
aug_apta = [] |
|
aug_prot = [] |
|
aug_y = [] |
|
for a, p, y in zip(apta, prot, ys): |
|
aug_apta.append(a) |
|
aug_prot.append(p) |
|
aug_y.append(y) |
|
|
|
aug_apta.append(a[::-1]) |
|
aug_prot.append(p) |
|
aug_y.append(y) |
|
|
|
aug_apta.append(a) |
|
aug_prot.append(p[::-1]) |
|
aug_y.append(y) |
|
|
|
aug_apta.append(a[::-1]) |
|
aug_prot.append(p[::-1]) |
|
aug_y.append(y) |
|
|
|
return np.array(aug_apta), np.array(aug_prot), np.array(aug_y) |
|
|
|
def generate_3d_mask(batch1, batch2, heads): |
|
|
|
batch1 = torch.tensor(batch1, dtype=torch.bool) |
|
batch2 = torch.tensor(batch2, dtype=torch.bool) |
|
|
|
|
|
if batch1.size(0) != batch2.size(0): |
|
raise ValueError("The batches must have the same number of vectors") |
|
|
|
|
|
out_mask = [] |
|
masks = torch.stack([torch.ger(vec1, vec2) for vec1, vec2 in zip(batch1, batch2)]) |
|
for j in range(masks.shape[0]): |
|
out_mask.append(torch.stack([masks[j] for i in range(heads)])) |
|
|
|
out_mask = torch.cat(out_mask) |
|
|
|
|
|
out_mask = out_mask.float() |
|
out_mask[out_mask == 0] = -1e9 |
|
out_mask[out_mask == 1] = 0 |
|
|
|
return out_mask |
|
|
|
class CAN(nn.Module): |
|
def __init__(self, hidden_dim, num_heads, group_size, aggregation): |
|
super(CAN, self).__init__() |
|
self.aggregation = aggregation |
|
self.group_size = group_size |
|
self.hidden_dim = hidden_dim |
|
self.num_heads = num_heads |
|
self.head_dim = hidden_dim // num_heads |
|
|
|
|
|
self.prot_query = nn.Linear(hidden_dim, hidden_dim, bias=False) |
|
self.prot_key = nn.Linear(hidden_dim, hidden_dim, bias=False) |
|
self.prot_val = nn.Linear(hidden_dim, hidden_dim, bias=False) |
|
|
|
|
|
self.apta_query = nn.Linear(hidden_dim, hidden_dim, bias=False) |
|
self.apta_key = nn.Linear(hidden_dim, hidden_dim, bias=False) |
|
self.apta_val = nn.Linear(hidden_dim, hidden_dim, bias=False) |
|
|
|
|
|
self.lp = nn.Linear(hidden_dim, hidden_dim) |
|
|
|
def mask_logits(self, logits, mask_row, mask_col, inf=1e6): |
|
N, L1, L2, H = logits.shape |
|
mask_row = mask_row.view(N, L1, 1).repeat(1, 1, H) |
|
mask_col = mask_col.view(N, L2, 1).repeat(1, 1, H) |
|
|
|
|
|
mask_pair = torch.einsum('blh, bkh->blkh', mask_row, mask_col) |
|
|
|
|
|
logits = torch.where(mask_pair, logits, logits - inf) |
|
alpha = torch.softmax(logits, dim=2) |
|
mask_row = mask_row.view(N, L1, 1, H).repeat(1, 1, L2, 1) |
|
alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha)) |
|
return alpha |
|
|
|
def rearrange_heads(self, x, n_heads, n_ch): |
|
|
|
s = list(x.size())[:-1] + [n_heads, n_ch] |
|
return x.view(*s) |
|
|
|
def grouped_embeddings(self, x, mask, group_size): |
|
N, L, D = x.shape |
|
groups = L // group_size |
|
|
|
x_grouped = x.view(N, groups, group_size, D).mean(dim=2) |
|
|
|
mask_grouped = mask.view(N, groups, group_size).any(dim=2) |
|
return x_grouped, mask_grouped |
|
|
|
def forward(self, protein, aptamer, mask_prot, mask_apta): |
|
|
|
protein_grouped, mask_prot_grouped = self.grouped_embeddings(protein, mask_prot, self.group_size) |
|
apta_grouped, mask_apta_grouped = self.grouped_embeddings(aptamer, mask_apta, self.group_size) |
|
|
|
|
|
query_prot = self.rearrange_heads(self.prot_query(protein_grouped), self.num_heads, self.head_dim) |
|
key_prot = self.rearrange_heads(self.prot_key(protein_grouped), self.num_heads, self.head_dim) |
|
value_prot = self.rearrange_heads(self.prot_val(protein_grouped), self.num_heads, self.head_dim) |
|
|
|
query_apta = self.rearrange_heads(self.apta_query(apta_grouped), self.num_heads, self.head_dim) |
|
key_apta = self.rearrange_heads(self.apta_key(apta_grouped), self.num_heads, self.head_dim) |
|
value_apta = self.rearrange_heads(self.apta_val(apta_grouped), self.num_heads, self.head_dim) |
|
|
|
|
|
logits_pp = torch.einsum('blhd, bkhd->blkh', query_prot, key_prot) |
|
logits_pa = torch.einsum('blhd, bkhd->blkh', query_prot, key_apta) |
|
logits_ap = torch.einsum('blhd, bkhd->blkh', query_apta, key_prot) |
|
logits_aa = torch.einsum('blhd, bkhd->blkh', query_apta, key_apta) |
|
|
|
ml_pp = self.mask_logits(logits_pp, mask_prot_grouped, mask_prot_grouped) |
|
ml_pa = self.mask_logits(logits_pa, mask_prot_grouped, mask_apta_grouped) |
|
ml_ap = self.mask_logits(logits_ap, mask_apta_grouped, mask_prot_grouped) |
|
ml_aa = self.mask_logits(logits_aa, mask_apta_grouped, mask_apta_grouped) |
|
|
|
|
|
prot_embedding = (torch.einsum('blkh, bkhd->blhd', ml_pp, value_prot).flatten(-2) + |
|
torch.einsum('blkh, bkhd->blhd', ml_pa, value_apta).flatten(-2)) / 2 |
|
apta_embedding = (torch.einsum('blkh, bkhd->blhd', ml_ap, value_prot).flatten(-2) + |
|
torch.einsum('blkh, bkhd->blhd', ml_aa, value_apta).flatten(-2)) / 2 |
|
|
|
prot_embedding += protein |
|
apta_embedding += aptamer |
|
|
|
|
|
if self.aggregation == "cls": |
|
prot_embed = prot_embedding[:, 0] |
|
apta_embed = apta_embedding[:, 0] |
|
elif self.aggregation == "mean_all_tok": |
|
prot_embed = prot_embedding.mean(1) |
|
apta_embed = apta_embedding.mean(1) |
|
elif self.aggregation == "mean": |
|
prot_embed = (prot_embedding * mask_prot_grouped.unsqueeze(-1)).sum(1) / mask_prot_grouped.sum(-1).unsqueeze(-1) |
|
apta_embed = (apta_embedding * mask_apta_grouped.unsqueeze(-1)).sum(1) / mask_apta_grouped.sum(-1).unsqueeze(-1) |
|
else: |
|
raise NotImplementedError() |
|
|
|
embed = torch.cat([prot_embed, apta_embed], dim=1) |
|
|
|
return embed, ml_pa, ml_pp, ml_aa |
|
|