Spaces:
Running
Running
Undo previous commit
Browse filesapp.py committed here
- gen_api_answer.py +417 -1030
gen_api_answer.py
CHANGED
@@ -1,1061 +1,448 @@
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import re
|
3 |
-
import
|
4 |
-
|
5 |
-
from datetime import datetime
|
6 |
-
import hashlib
|
7 |
-
import gradio as gr
|
8 |
-
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
load_dotenv()
|
11 |
-
|
12 |
-
from gen_api_answer import (
|
13 |
-
get_model_response,
|
14 |
-
parse_model_response,
|
15 |
-
prometheus_parse_model_response,
|
16 |
-
atla_parse_model_response,
|
17 |
-
flow_judge_parse_model_response
|
18 |
-
)
|
19 |
-
|
20 |
-
from random_sample_generation import (
|
21 |
-
get_random_human_ai_pair,
|
22 |
-
get_random_human_ai_ground_truth_pair,
|
23 |
-
generate_ai_response
|
24 |
-
)
|
25 |
-
from db import add_vote, create_db_connection, get_votes
|
26 |
-
|
27 |
-
from utils import Vote
|
28 |
-
|
29 |
-
from common import (
|
30 |
-
POLICY_CONTENT,
|
31 |
-
ACKNOWLEDGEMENTS,
|
32 |
-
CSS_STYLES,
|
33 |
-
MAIN_TITLE,
|
34 |
-
HOW_IT_WORKS,
|
35 |
-
)
|
36 |
from prompts import (
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
DEFAULT_SCORE_3,
|
44 |
-
DEFAULT_SCORE_4,
|
45 |
-
DEFAULT_SCORE_5,
|
46 |
-
)
|
47 |
-
from leaderboard import (
|
48 |
-
get_leaderboard,
|
49 |
-
get_leaderboard_stats,
|
50 |
-
get_model_rankings,
|
51 |
-
DEFAULT_ELO,
|
52 |
-
K_FACTOR
|
53 |
)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
def load_model_data():
|
67 |
-
model_data = {}
|
68 |
try:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
model_data = load_model_data()
|
84 |
-
|
85 |
-
def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
|
86 |
-
prompt_value = prompt.value if hasattr(prompt, 'value') else prompt
|
87 |
-
|
88 |
-
vote = Vote(
|
89 |
-
timestamp=datetime.now().isoformat(),
|
90 |
-
prompt=prompt_value,
|
91 |
-
response_a=response_a,
|
92 |
-
response_b=response_b,
|
93 |
-
model_a=model_a,
|
94 |
-
model_b=model_b,
|
95 |
-
winner=winner,
|
96 |
-
judge_id=judge_id,
|
97 |
-
)
|
98 |
-
add_vote(vote, db)
|
99 |
-
|
100 |
-
|
101 |
-
def parse_variables(prompt):
|
102 |
-
# Extract variables enclosed in double curly braces
|
103 |
-
variables = re.findall(r"{{(.*?)}}", prompt)
|
104 |
-
# Remove duplicates while preserving order
|
105 |
-
seen = set()
|
106 |
-
variables = [
|
107 |
-
x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))
|
108 |
-
]
|
109 |
-
return variables
|
110 |
-
|
111 |
-
|
112 |
-
def get_final_prompt(eval_prompt, variable_values):
|
113 |
-
# Replace variables in the eval prompt with their values
|
114 |
-
for var, val in variable_values.items():
|
115 |
-
eval_prompt = eval_prompt.replace("{{" + var + "}}", val)
|
116 |
-
return eval_prompt
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
def get_ip(request: gr.Request) -> str:
|
121 |
-
"""Get and hash the IP address from the request."""
|
122 |
-
if "cf-connecting-ip" in request.headers:
|
123 |
-
ip = request.headers["cf-connecting-ip"]
|
124 |
-
elif "x-forwarded-for" in request.headers:
|
125 |
-
ip = request.headers["x-forwarded-for"]
|
126 |
-
if "," in ip:
|
127 |
-
ip = ip.split(",")[0]
|
128 |
-
else:
|
129 |
-
ip = request.client.host
|
130 |
-
|
131 |
-
# Hash the IP address for privacy
|
132 |
-
return hashlib.sha256(ip.encode()).hexdigest()[:16]
|
133 |
-
|
134 |
-
|
135 |
-
def get_vote_message(choice: str, model_a: str, model_b: str) -> tuple[str, str]:
|
136 |
-
"""Generate appropriate message based on vote and model rankings.
|
137 |
-
Returns (title, message) tuple."""
|
138 |
-
# Get current rankings
|
139 |
-
voting_data = get_current_votes()
|
140 |
-
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
|
141 |
-
rankings = get_model_rankings(leaderboard)
|
142 |
-
pos_a = rankings.get(model_a, 0)
|
143 |
-
pos_b = rankings.get(model_b, 0)
|
144 |
-
|
145 |
-
if choice == "Tie":
|
146 |
-
return "It's a tie!", "Keep voting responsibly 🤗"
|
147 |
-
|
148 |
-
# Check if vote aligns with leaderboard
|
149 |
-
if (choice == "A" and pos_a < pos_b) or (choice == "B" and pos_b < pos_a):
|
150 |
-
return "The favourite wins!", "Keep voting responsibly 🤗"
|
151 |
-
else:
|
152 |
-
return "The underdog wins!", "Keep voting responsibly 🤗"
|
153 |
-
|
154 |
-
|
155 |
-
def vote(
|
156 |
-
choice,
|
157 |
-
model_a,
|
158 |
-
model_b,
|
159 |
-
final_prompt,
|
160 |
-
score_a,
|
161 |
-
critique_a,
|
162 |
-
score_b,
|
163 |
-
critique_b,
|
164 |
-
request: gr.Request,
|
165 |
-
):
|
166 |
-
# Get hashed IP as judge_id
|
167 |
-
judge_id = get_ip(request)
|
168 |
-
|
169 |
-
# Update ELO scores based on user choice
|
170 |
-
elo_a = elo_scores[model_a]
|
171 |
-
elo_b = elo_scores[model_b]
|
172 |
-
|
173 |
-
# Calculate expected scores
|
174 |
-
Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
|
175 |
-
Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))
|
176 |
-
|
177 |
-
# Assign actual scores
|
178 |
-
if choice == "A":
|
179 |
-
Sa, Sb = 1, 0
|
180 |
-
elif choice == "B":
|
181 |
-
Sa, Sb = 0, 1
|
182 |
-
else:
|
183 |
-
Sa, Sb = 0.5, 0.5
|
184 |
-
|
185 |
-
# Update scores and vote counts
|
186 |
-
elo_scores[model_a] += K_FACTOR * (Sa - Ea)
|
187 |
-
elo_scores[model_b] += K_FACTOR * (Sb - Eb)
|
188 |
-
vote_counts[model_a] += 1
|
189 |
-
vote_counts[model_b] += 1
|
190 |
-
|
191 |
-
# Format the full responses with score and critique
|
192 |
-
response_a = f"""{score_a}
|
193 |
-
|
194 |
-
{critique_a}"""
|
195 |
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
rankings = get_model_rankings(leaderboard)
|
209 |
-
pos_a = rankings.get(model_a, 0)
|
210 |
-
pos_b = rankings.get(model_b, 0)
|
211 |
-
|
212 |
-
# Format model names with positions and win/loss indicators
|
213 |
-
if choice == "Tie":
|
214 |
-
model_a_display = f"*Model: {model_a} (Position #{pos_a})*"
|
215 |
-
model_b_display = f"*Model: {model_b} (Position #{pos_b})*"
|
216 |
-
else:
|
217 |
-
winner = model_a if choice == "A" else model_b
|
218 |
-
loser = model_b if choice == "A" else model_a
|
219 |
-
winner_pos = pos_a if choice == "A" else pos_b
|
220 |
-
loser_pos = pos_b if choice == "A" else pos_a
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
data = [
|
251 |
-
[
|
252 |
-
entry["Model"],
|
253 |
-
float(entry["ELO Score"]),
|
254 |
-
entry["95% CI"],
|
255 |
-
entry["# Votes"],
|
256 |
-
entry["Organization"],
|
257 |
-
entry["License"],
|
258 |
-
]
|
259 |
-
for entry in leaderboard
|
260 |
-
]
|
261 |
-
stats = get_leaderboard_stats(model_data, voting_data)
|
262 |
-
return [gr.update(value=data), gr.update(value=stats)]
|
263 |
-
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
def
|
273 |
-
"""
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
else:
|
278 |
-
|
279 |
-
human_msg, ai_msg = get_random_human_ai_pair()
|
280 |
-
ground_truth_msg = ""
|
281 |
-
|
282 |
-
return [
|
283 |
-
gr.update(value=human_msg),
|
284 |
-
gr.update(value=ai_msg),
|
285 |
-
gr.update(value="🎲", variant="secondary"), # Reset random button appearance
|
286 |
-
gr.update(value=""), # Clear score A
|
287 |
-
gr.update(value=""), # Clear critique A
|
288 |
-
gr.update(value=""), # Clear score B
|
289 |
-
gr.update(value=""), # Clear critique B
|
290 |
-
gr.update(interactive=False, variant="primary"), # Reset vote A
|
291 |
-
gr.update(interactive=False, variant="primary"), # Reset vote B
|
292 |
-
gr.update(interactive=False, variant="primary"), # Reset vote tie
|
293 |
-
gr.update(value="*Model: Hidden*"), # Reset model name A
|
294 |
-
gr.update(value="*Model: Hidden*"), # Reset model name B
|
295 |
-
gr.update(value=ground_truth_msg, visible=compatible_mode), # Set ground truth and visibility
|
296 |
-
]
|
297 |
-
|
298 |
-
|
299 |
-
with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
|
300 |
-
gr.Markdown(MAIN_TITLE)
|
301 |
-
gr.Markdown(HOW_IT_WORKS)
|
302 |
|
303 |
-
#
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
with gr.Tabs():
|
310 |
-
with gr.TabItem("Judge Arena"):
|
311 |
-
with gr.Row():
|
312 |
-
# Left side - Input section
|
313 |
-
with gr.Column(scale=1):
|
314 |
-
with gr.Group():
|
315 |
-
human_input = gr.TextArea(
|
316 |
-
label="👩 User Input",
|
317 |
-
lines=10,
|
318 |
-
placeholder="Enter the human message here..."
|
319 |
-
)
|
320 |
-
with gr.Row():
|
321 |
-
generate_btn = gr.Button(
|
322 |
-
"Generate AI Response",
|
323 |
-
size="sm",
|
324 |
-
interactive=False
|
325 |
-
)
|
326 |
-
|
327 |
-
ai_response = gr.TextArea(
|
328 |
-
label="🤖 AI Response",
|
329 |
-
lines=15,
|
330 |
-
placeholder="Enter the AI response here..."
|
331 |
-
)
|
332 |
-
|
333 |
-
# Ground truth response (initially hidden)
|
334 |
-
ground_truth = gr.TextArea(
|
335 |
-
label="🎯 Ground truth response",
|
336 |
-
lines=12,
|
337 |
-
placeholder="Enter the ground truth response here...",
|
338 |
-
visible=False
|
339 |
-
)
|
340 |
-
|
341 |
-
with gr.Row():
|
342 |
-
random_btn = gr.Button("🎲", scale=2)
|
343 |
-
send_btn = gr.Button(
|
344 |
-
value="Run judges",
|
345 |
-
variant="primary",
|
346 |
-
size="lg",
|
347 |
-
scale=8
|
348 |
-
)
|
349 |
-
|
350 |
-
# Right side - Model outputs
|
351 |
-
with gr.Column(scale=1):
|
352 |
-
gr.Markdown("### 👩⚖️ Judge A")
|
353 |
-
with gr.Group():
|
354 |
-
model_name_a = gr.Markdown("*Model: Hidden*")
|
355 |
-
with gr.Row():
|
356 |
-
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
|
357 |
-
score_a = gr.Textbox(label="Score", lines=6, interactive=False)
|
358 |
-
vote_a = gr.Button("Vote A", variant="primary", interactive=False)
|
359 |
-
with gr.Column(scale=9, min_width=400): # Wider width for critique
|
360 |
-
critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
|
361 |
-
|
362 |
-
# Tie button row
|
363 |
-
with gr.Row() as tie_button_row:
|
364 |
-
with gr.Column():
|
365 |
-
vote_tie = gr.Button("Tie", variant="primary", interactive=False)
|
366 |
-
|
367 |
-
|
368 |
-
gr.Markdown("### 🧑⚖️ Judge B")
|
369 |
-
with gr.Group():
|
370 |
-
model_name_b = gr.Markdown("*Model: Hidden*")
|
371 |
-
with gr.Row():
|
372 |
-
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
|
373 |
-
score_b = gr.Textbox(label="Score", lines=6, interactive=False)
|
374 |
-
vote_b = gr.Button("Vote B", variant="primary", interactive=False)
|
375 |
-
with gr.Column(scale=9, min_width=400): # Wider width for critique
|
376 |
-
critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
|
377 |
-
# Place Vote B button directly under Judge B
|
378 |
-
|
379 |
-
gr.Markdown("<br>")
|
380 |
-
|
381 |
-
|
382 |
-
# Replace the "Edit Judge Prompt" Accordion section with:
|
383 |
-
with gr.Accordion("📝 Edit Judge Prompt", open=False) as prompt_accordion:
|
384 |
-
gr.Markdown("<br>")
|
385 |
-
use_reference_toggle = gr.Checkbox(
|
386 |
-
label="Use a reference response",
|
387 |
-
value=False
|
388 |
-
)
|
389 |
-
|
390 |
-
# Hide the default prompt editor
|
391 |
-
with gr.Column(visible=False) as default_prompt_editor:
|
392 |
-
eval_prompt_editable = gr.TextArea(
|
393 |
-
value=DEFAULT_EVAL_PROMPT_EDITABLE,
|
394 |
-
label="Evaluation Criteria",
|
395 |
-
lines=12
|
396 |
-
)
|
397 |
-
|
398 |
-
with gr.Row(visible=False) as edit_buttons_row:
|
399 |
-
cancel_prompt_btn = gr.Button("Cancel")
|
400 |
-
save_prompt_btn = gr.Button("Save", variant="primary")
|
401 |
-
gr.Markdown("*The sample being evaluated is always appended as:*")
|
402 |
-
gr.Markdown(f"```{FIXED_EVAL_SUFFIX}")
|
403 |
-
|
404 |
-
# Show the compatible mode editor
|
405 |
-
with gr.Column(visible=True) as compatible_prompt_editor:
|
406 |
-
with gr.Row():
|
407 |
-
# Left column - Evaluation Criteria
|
408 |
-
with gr.Column(scale=1):
|
409 |
-
eval_criteria_text = gr.TextArea(
|
410 |
-
label="Evaluation Criteria",
|
411 |
-
lines=12,
|
412 |
-
value=DEFAULT_EVAL_CRITERIA,
|
413 |
-
placeholder="Enter the evaluation criteria..."
|
414 |
-
)
|
415 |
-
prometheus_reference = gr.Markdown(
|
416 |
-
"<br> *By default, we use the Prometheus absolute grading prompt template - see [here](https://huggingface.co/prometheus-eval/prometheus-7b-v2.0).*",
|
417 |
-
visible=True
|
418 |
-
)
|
419 |
-
|
420 |
-
# Right column - Score Descriptions
|
421 |
-
with gr.Column(scale=1):
|
422 |
-
score1_description = gr.TextArea(
|
423 |
-
label="Score 1",
|
424 |
-
value=DEFAULT_SCORE_1,
|
425 |
-
placeholder="Description for score 1",
|
426 |
-
lines=2
|
427 |
-
)
|
428 |
-
score2_description = gr.TextArea(
|
429 |
-
label="Score 2",
|
430 |
-
value=DEFAULT_SCORE_2,
|
431 |
-
placeholder="Description for score 2",
|
432 |
-
lines=2
|
433 |
-
)
|
434 |
-
score3_description = gr.TextArea(
|
435 |
-
label="Score 3",
|
436 |
-
value=DEFAULT_SCORE_3,
|
437 |
-
placeholder="Description for score 3",
|
438 |
-
lines=2
|
439 |
-
)
|
440 |
-
score4_description = gr.TextArea(
|
441 |
-
label="Score 4",
|
442 |
-
value=DEFAULT_SCORE_4,
|
443 |
-
placeholder="Description for score 4",
|
444 |
-
lines=2
|
445 |
-
)
|
446 |
-
score5_description = gr.TextArea(
|
447 |
-
label="Score 5",
|
448 |
-
value=DEFAULT_SCORE_5,
|
449 |
-
placeholder="Description for score 5",
|
450 |
-
lines=2
|
451 |
-
)
|
452 |
-
|
453 |
-
# Add save/cancel buttons for compatible mode
|
454 |
-
with gr.Row(visible=False) as compatible_edit_buttons_row:
|
455 |
-
compatible_cancel_btn = gr.Button("Cancel")
|
456 |
-
compatible_save_btn = gr.Button("Save", variant="primary")
|
457 |
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
)
|
472 |
-
|
473 |
-
gr.Markdown("""<br>
|
474 |
-
<br>
|
475 |
-
Judge Arena uses Together AI for inference of open-source models. FP8 models are named as -- "Turbo" where the performance of the FP16 reference models is closely matched:
|
476 |
|
477 |
-
|
478 |
-
""
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
)
|
|
|
|
|
|
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
)
|
493 |
-
|
494 |
-
with gr.TabItem("Policy"):
|
495 |
-
gr.Markdown(POLICY_CONTENT)
|
496 |
-
gr.Markdown(ACKNOWLEDGEMENTS)
|
497 |
-
|
498 |
-
# Define state variables for model tracking
|
499 |
-
model_a_state = gr.State()
|
500 |
-
model_b_state = gr.State()
|
501 |
-
final_prompt_state = gr.State()
|
502 |
-
eval_prompt_previous = gr.State(value=DEFAULT_EVAL_PROMPT_EDITABLE) # Initialize with default value
|
503 |
-
is_editing = gr.State(False) # Track editing state
|
504 |
-
compatible_mode_state = gr.State(False) # Track compatible mode state
|
505 |
-
|
506 |
-
# Update model names after responses are generated
|
507 |
-
def update_model_names(model_a, model_b):
|
508 |
-
return gr.update(value=f"*Model: {model_a}*"), gr.update(
|
509 |
-
value=f"*Model: {model_b}*"
|
510 |
-
)
|
511 |
-
|
512 |
-
# Store the last submitted prompt and variables for comparison
|
513 |
-
last_submission = gr.State({})
|
514 |
-
|
515 |
-
# Update the vote button click handlers
|
516 |
-
vote_a.click(
|
517 |
-
fn=vote,
|
518 |
-
inputs=[
|
519 |
-
gr.State("A"),
|
520 |
-
model_a_state,
|
521 |
-
model_b_state,
|
522 |
-
final_prompt_state,
|
523 |
-
score_a,
|
524 |
-
critique_a,
|
525 |
-
score_b,
|
526 |
-
critique_b,
|
527 |
-
],
|
528 |
-
outputs=[
|
529 |
-
vote_a,
|
530 |
-
vote_b,
|
531 |
-
vote_tie,
|
532 |
-
model_name_a,
|
533 |
-
model_name_b,
|
534 |
-
send_btn,
|
535 |
-
random_btn,
|
536 |
-
gr.State(), # placeholder for success message
|
537 |
-
],
|
538 |
-
)
|
539 |
-
|
540 |
-
vote_b.click(
|
541 |
-
fn=vote,
|
542 |
-
inputs=[
|
543 |
-
gr.State("B"),
|
544 |
-
model_a_state,
|
545 |
-
model_b_state,
|
546 |
-
final_prompt_state,
|
547 |
-
score_a,
|
548 |
-
critique_a,
|
549 |
-
score_b,
|
550 |
-
critique_b,
|
551 |
-
],
|
552 |
-
outputs=[
|
553 |
-
vote_a,
|
554 |
-
vote_b,
|
555 |
-
vote_tie,
|
556 |
-
model_name_a,
|
557 |
-
model_name_b,
|
558 |
-
send_btn,
|
559 |
-
random_btn,
|
560 |
-
gr.State(), # placeholder for success message
|
561 |
-
],
|
562 |
-
)
|
563 |
-
|
564 |
-
vote_tie.click(
|
565 |
-
fn=vote,
|
566 |
-
inputs=[
|
567 |
-
gr.State("Tie"),
|
568 |
-
model_a_state,
|
569 |
-
model_b_state,
|
570 |
-
final_prompt_state,
|
571 |
-
score_a,
|
572 |
-
critique_a,
|
573 |
-
score_b,
|
574 |
-
critique_b,
|
575 |
-
],
|
576 |
-
outputs=[
|
577 |
-
vote_a,
|
578 |
-
vote_b,
|
579 |
-
vote_tie,
|
580 |
-
model_name_a,
|
581 |
-
model_name_b,
|
582 |
-
send_btn,
|
583 |
-
random_btn,
|
584 |
-
gr.State(), # placeholder for success message
|
585 |
-
],
|
586 |
-
)
|
587 |
-
|
588 |
-
# Add handlers for save/cancel buttons
|
589 |
-
def save_prompt(new_prompt, previous_prompt):
|
590 |
-
return [
|
591 |
-
gr.update(value=new_prompt), # Update the prompt
|
592 |
-
new_prompt, # Update the previous prompt state
|
593 |
-
gr.update(visible=False) # Hide the buttons
|
594 |
-
]
|
595 |
-
|
596 |
-
def cancel_prompt(previous_prompt):
|
597 |
-
return [
|
598 |
-
gr.update(value=previous_prompt), # Revert to previous prompt
|
599 |
-
previous_prompt, # Keep the previous prompt state
|
600 |
-
gr.update(visible=False) # Hide the buttons
|
601 |
-
]
|
602 |
-
|
603 |
-
def show_edit_buttons(current_value, previous_value):
|
604 |
-
# Show buttons only if the current value differs from the previous value
|
605 |
-
return gr.update(visible=current_value != previous_value)
|
606 |
-
|
607 |
-
# Add handlers for save/cancel buttons and prompt changes
|
608 |
-
save_prompt_btn.click(
|
609 |
-
fn=save_prompt,
|
610 |
-
inputs=[eval_prompt_editable, eval_prompt_previous],
|
611 |
-
outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
|
612 |
-
)
|
613 |
-
|
614 |
-
cancel_prompt_btn.click(
|
615 |
-
fn=cancel_prompt,
|
616 |
-
inputs=[eval_prompt_previous],
|
617 |
-
outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
|
618 |
-
)
|
619 |
-
|
620 |
-
eval_prompt_editable.change(
|
621 |
-
fn=show_edit_buttons,
|
622 |
-
inputs=[eval_prompt_editable, eval_prompt_previous],
|
623 |
-
outputs=edit_buttons_row
|
624 |
-
)
|
625 |
-
|
626 |
-
# Function to toggle visibility based on compatible mode
|
627 |
-
def toggle_use_reference(checked):
|
628 |
-
if checked:
|
629 |
-
# Get new random samples with ground truth when enabling reference mode
|
630 |
-
human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
|
631 |
-
return {
|
632 |
-
ground_truth: gr.update(visible=True, value=ground_truth_msg),
|
633 |
-
human_input: gr.update(value=human_msg),
|
634 |
-
ai_response: gr.update(value=ai_msg),
|
635 |
-
# Reset other UI elements
|
636 |
-
score_a: gr.update(value=""),
|
637 |
-
critique_a: gr.update(value=""),
|
638 |
-
score_b: gr.update(value=""),
|
639 |
-
critique_b: gr.update(value=""),
|
640 |
-
vote_a: gr.update(interactive=False, variant="primary"),
|
641 |
-
vote_b: gr.update(interactive=False, variant="primary"),
|
642 |
-
vote_tie: gr.update(interactive=False, variant="primary"),
|
643 |
-
model_name_a: gr.update(value="*Model: Hidden*"),
|
644 |
-
model_name_b: gr.update(value="*Model: Hidden*"),
|
645 |
-
random_btn: gr.update(value="🎲", variant="secondary"),
|
646 |
-
}
|
647 |
else:
|
648 |
-
#
|
649 |
-
return
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
use_reference_toggle.change(
|
655 |
-
fn=toggle_use_reference,
|
656 |
-
inputs=[use_reference_toggle],
|
657 |
-
outputs=[
|
658 |
-
ground_truth,
|
659 |
-
human_input,
|
660 |
-
ai_response,
|
661 |
-
score_a,
|
662 |
-
critique_a,
|
663 |
-
score_b,
|
664 |
-
critique_b,
|
665 |
-
vote_a,
|
666 |
-
vote_b,
|
667 |
-
vote_tie,
|
668 |
-
model_name_a,
|
669 |
-
model_name_b,
|
670 |
-
random_btn,
|
671 |
-
]
|
672 |
-
)
|
673 |
-
|
674 |
-
# Add a new state variable to track first game
|
675 |
-
first_game_state = gr.State(True) # Initialize as True
|
676 |
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
'score2_desc': score2_description,
|
699 |
-
'score3_desc': score3_description,
|
700 |
-
'score4_desc': score4_description,
|
701 |
-
'score5_desc': score5_description,
|
702 |
-
}
|
703 |
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
atla_model = "Atla-8B-preview"
|
709 |
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
|
|
|
|
|
|
|
|
714 |
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
# For subsequent games, new models appears 40% of the time
|
722 |
-
if random.random() < 0.4:
|
723 |
-
# Randomly choose between new models
|
724 |
-
new_model = random.choice(["Atla-8B-preview"]) # add "Flow-Judge-1.0" once ready
|
725 |
-
other_models = [m for m in active_models if m not in [new_model]]
|
726 |
-
other_model = random.choice(other_models)
|
727 |
-
|
728 |
-
if random.random() < 0.5:
|
729 |
-
model_a, model_b = new_model, other_model
|
730 |
-
else:
|
731 |
-
model_a, model_b = other_model, new_model
|
732 |
-
else:
|
733 |
-
# For other cases, exclude both Atla and Flow-Judge
|
734 |
-
non_special_models = [m for m in active_models if m not in new_model]
|
735 |
-
model1, model2 = random.sample(non_special_models, 2)
|
736 |
-
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
|
737 |
-
|
738 |
-
# Get responses from models
|
739 |
-
response_a = get_model_response(
|
740 |
-
model_a,
|
741 |
-
model_data.get(model_a),
|
742 |
-
prompt_data,
|
743 |
-
use_reference=use_reference
|
744 |
-
)
|
745 |
-
response_b = get_model_response(
|
746 |
-
model_b,
|
747 |
-
model_data.get(model_b),
|
748 |
-
prompt_data,
|
749 |
-
use_reference=use_reference
|
750 |
-
)
|
751 |
-
|
752 |
-
# Parse the responses based on model, using appropriate parsing for different models
|
753 |
-
is_prometheus_a = (model_data.get(model_a)['organization'] == 'Prometheus')
|
754 |
-
is_prometheus_b = (model_data.get(model_b)['organization'] == 'Prometheus')
|
755 |
-
is_atla_a = (model_data.get(model_a)['organization'] == 'Atla')
|
756 |
-
is_atla_b = (model_data.get(model_b)['organization'] == 'Atla')
|
757 |
-
is_flow_judge_a = (model_data.get(model_a)['organization'] == 'Flow AI')
|
758 |
-
is_flow_judge_b = (model_data.get(model_b)['organization'] == 'Flow AI')
|
759 |
-
|
760 |
-
if is_prometheus_a:
|
761 |
-
score_a_val, critique_a_val = prometheus_parse_model_response(response_a)
|
762 |
-
score_a_val = f"{score_a_val} / 5"
|
763 |
-
elif is_atla_a:
|
764 |
-
score_a_val, critique_a_val = atla_parse_model_response(response_a)
|
765 |
-
score_a_val = f"{score_a_val} / 5"
|
766 |
-
elif is_flow_judge_a:
|
767 |
-
score_a_val, critique_a_val = flow_judge_parse_model_response(response_a)
|
768 |
-
score_a_val = f"{score_a_val} / 5"
|
769 |
-
else:
|
770 |
-
score_a_val, critique_a_val = parse_model_response(response_a)
|
771 |
-
score_a_val = f"{score_a_val} / 5"
|
772 |
-
|
773 |
-
if is_prometheus_b:
|
774 |
-
score_b_val, critique_b_val = prometheus_parse_model_response(response_b)
|
775 |
-
score_b_val = f"{score_b_val} / 5"
|
776 |
-
elif is_atla_b:
|
777 |
-
score_b_val, critique_b_val = atla_parse_model_response(response_b)
|
778 |
-
score_b_val = f"{score_b_val} / 5"
|
779 |
-
elif is_flow_judge_b:
|
780 |
-
score_b_val, critique_b_val = flow_judge_parse_model_response(response_b)
|
781 |
-
score_b_val = f"{score_b_val} / 5"
|
782 |
-
else:
|
783 |
-
score_b_val, critique_b_val = parse_model_response(response_b)
|
784 |
-
score_b_val = f"{score_b_val} / 5"
|
785 |
-
|
786 |
-
return (
|
787 |
-
score_a_val,
|
788 |
-
critique_a_val,
|
789 |
-
score_b_val,
|
790 |
-
critique_b_val,
|
791 |
-
gr.update(interactive=True, variant="primary"), # vote_a
|
792 |
-
gr.update(interactive=True, variant="primary"), # vote_b
|
793 |
-
gr.update(interactive=True, variant="primary"), # vote_tie
|
794 |
-
model_a,
|
795 |
-
model_b,
|
796 |
-
eval_prompt,
|
797 |
-
gr.update(value="*Model: Hidden*"),
|
798 |
-
gr.update(value="*Model: Hidden*"),
|
799 |
-
gr.update(value="Regenerate judges", variant="secondary", interactive=True),
|
800 |
-
gr.update(value="🎲"), # random_btn
|
801 |
-
False, # Set first_game_state to False after first submission
|
802 |
-
)
|
803 |
|
804 |
-
|
805 |
-
|
806 |
-
first_game = True
|
807 |
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
813 |
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
ground_truth,
|
825 |
-
score1_description,
|
826 |
-
score2_description,
|
827 |
-
score3_description,
|
828 |
-
score4_description,
|
829 |
-
score5_description,
|
830 |
-
first_game_state, # Add first_game_state as input
|
831 |
-
],
|
832 |
-
outputs=[
|
833 |
-
score_a,
|
834 |
-
critique_a,
|
835 |
-
score_b,
|
836 |
-
critique_b,
|
837 |
-
vote_a,
|
838 |
-
vote_b,
|
839 |
-
vote_tie,
|
840 |
-
model_a_state,
|
841 |
-
model_b_state,
|
842 |
-
final_prompt_state,
|
843 |
-
model_name_a,
|
844 |
-
model_name_b,
|
845 |
-
send_btn,
|
846 |
-
random_btn,
|
847 |
-
first_game_state, # Add first_game_state as output
|
848 |
-
],
|
849 |
-
)
|
850 |
-
|
851 |
-
# Add random button handler
|
852 |
-
random_btn.click(
|
853 |
-
fn=populate_random_example,
|
854 |
-
inputs=[use_reference_toggle], # Use compatible mode toggle to decide behavior
|
855 |
-
outputs=[
|
856 |
-
human_input,
|
857 |
-
ai_response,
|
858 |
-
random_btn,
|
859 |
-
score_a,
|
860 |
-
critique_a,
|
861 |
-
score_b,
|
862 |
-
critique_b,
|
863 |
-
vote_a,
|
864 |
-
vote_b,
|
865 |
-
vote_tie,
|
866 |
-
model_name_a,
|
867 |
-
model_name_b,
|
868 |
-
ground_truth, # Set ground truth
|
869 |
-
]
|
870 |
-
)
|
871 |
-
|
872 |
-
# Add new input change handlers
|
873 |
-
def handle_input_change():
|
874 |
-
"""Reset UI state when inputs are changed"""
|
875 |
-
return [
|
876 |
-
gr.update(interactive=False), # vote_a
|
877 |
-
gr.update(interactive=False), # vote_b
|
878 |
-
gr.update(interactive=False), # vote_tie
|
879 |
-
gr.update(value="Run judges", variant="primary"), # send_btn
|
880 |
-
gr.update(value="🎲", variant="secondary"), # random_btn
|
881 |
-
]
|
882 |
-
|
883 |
-
# Update the change handlers for inputs
|
884 |
-
human_input.change(
|
885 |
-
fn=handle_input_change,
|
886 |
-
inputs=[],
|
887 |
-
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
|
888 |
-
)
|
889 |
-
|
890 |
-
ai_response.change(
|
891 |
-
fn=handle_input_change,
|
892 |
-
inputs=[],
|
893 |
-
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
|
894 |
-
)
|
895 |
-
|
896 |
-
generate_btn.click(
|
897 |
-
fn=lambda msg: (
|
898 |
-
generate_ai_response(msg)[0], # Only take the response text
|
899 |
-
gr.update(
|
900 |
-
value="Generate AI Response", # Keep the label
|
901 |
-
interactive=False # Disable the button
|
902 |
-
)
|
903 |
-
),
|
904 |
-
inputs=[human_input],
|
905 |
-
outputs=[ai_response, generate_btn]
|
906 |
-
)
|
907 |
-
|
908 |
-
human_input.change(
|
909 |
-
fn=lambda x: gr.update(interactive=bool(x.strip())),
|
910 |
-
inputs=[human_input],
|
911 |
-
outputs=[generate_btn]
|
912 |
-
)
|
913 |
-
|
914 |
-
# Update the demo.load to include the random example population
|
915 |
-
demo.load(
|
916 |
-
fn=lambda: populate_random_example(None, False), # Pass False for initial compatible_mode
|
917 |
-
inputs=[],
|
918 |
-
outputs=[
|
919 |
-
human_input,
|
920 |
-
ai_response,
|
921 |
-
random_btn,
|
922 |
-
score_a,
|
923 |
-
critique_a,
|
924 |
-
score_b,
|
925 |
-
critique_b,
|
926 |
-
vote_a,
|
927 |
-
vote_b,
|
928 |
-
vote_tie,
|
929 |
-
model_name_a,
|
930 |
-
model_name_b,
|
931 |
-
ground_truth,
|
932 |
-
]
|
933 |
-
)
|
934 |
-
|
935 |
-
# Add new state variables for compatible mode
|
936 |
-
eval_criteria_previous = gr.State(value=DEFAULT_EVAL_CRITERIA)
|
937 |
-
score1_previous = gr.State(value=DEFAULT_SCORE_1)
|
938 |
-
score2_previous = gr.State(value=DEFAULT_SCORE_2)
|
939 |
-
score3_previous = gr.State(value=DEFAULT_SCORE_3)
|
940 |
-
score4_previous = gr.State(value=DEFAULT_SCORE_4)
|
941 |
-
score5_previous = gr.State(value=DEFAULT_SCORE_5)
|
942 |
-
|
943 |
-
# Add new functions to handle compatible mode saves/cancels
|
944 |
-
def save_compatible_prompt(criteria, score1, score2, score3, score4, score5):
|
945 |
-
return [
|
946 |
-
gr.update(value=criteria), # Update criteria
|
947 |
-
criteria, # Update previous criteria state
|
948 |
-
gr.update(value=score1),
|
949 |
-
score1,
|
950 |
-
gr.update(value=score2),
|
951 |
-
score2,
|
952 |
-
gr.update(value=score3),
|
953 |
-
score3,
|
954 |
-
gr.update(value=score4),
|
955 |
-
score4,
|
956 |
-
gr.update(value=score5),
|
957 |
-
score5,
|
958 |
-
gr.update(visible=False) # Hide buttons
|
959 |
-
]
|
960 |
-
|
961 |
-
def cancel_compatible_prompt(prev_criteria, prev_score1, prev_score2, prev_score3, prev_score4, prev_score5):
|
962 |
-
return [
|
963 |
-
gr.update(value=prev_criteria),
|
964 |
-
prev_criteria,
|
965 |
-
gr.update(value=prev_score1),
|
966 |
-
prev_score1,
|
967 |
-
gr.update(value=prev_score2),
|
968 |
-
prev_score2,
|
969 |
-
gr.update(value=prev_score3),
|
970 |
-
prev_score3,
|
971 |
-
gr.update(value=prev_score4),
|
972 |
-
prev_score4,
|
973 |
-
gr.update(value=prev_score5),
|
974 |
-
prev_score5,
|
975 |
-
gr.update(visible=False)
|
976 |
-
]
|
977 |
-
|
978 |
-
def show_compatible_edit_buttons(*current_values):
|
979 |
-
previous_values = current_values[1::2] # Get previous values
|
980 |
-
current_values = current_values[::2] # Get current values
|
981 |
-
return gr.update(visible=any(curr != prev for curr, prev in zip(current_values, previous_values)))
|
982 |
-
|
983 |
-
# Add click handlers for compatible mode buttons
|
984 |
-
compatible_save_btn.click(
|
985 |
-
fn=save_compatible_prompt,
|
986 |
-
inputs=[
|
987 |
-
eval_criteria_text,
|
988 |
-
score1_description,
|
989 |
-
score2_description,
|
990 |
-
score3_description,
|
991 |
-
score4_description,
|
992 |
-
score5_description
|
993 |
-
],
|
994 |
-
outputs=[
|
995 |
-
eval_criteria_text,
|
996 |
-
eval_criteria_previous,
|
997 |
-
score1_description,
|
998 |
-
score1_previous,
|
999 |
-
score2_description,
|
1000 |
-
score2_previous,
|
1001 |
-
score3_description,
|
1002 |
-
score3_previous,
|
1003 |
-
score4_description,
|
1004 |
-
score4_previous,
|
1005 |
-
score5_description,
|
1006 |
-
score5_previous,
|
1007 |
-
compatible_edit_buttons_row
|
1008 |
-
]
|
1009 |
-
)
|
1010 |
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
score1_description,
|
1025 |
-
score1_previous,
|
1026 |
-
score2_description,
|
1027 |
-
score2_previous,
|
1028 |
-
score3_description,
|
1029 |
-
score3_previous,
|
1030 |
-
score4_description,
|
1031 |
-
score4_previous,
|
1032 |
-
score5_description,
|
1033 |
-
score5_previous,
|
1034 |
-
compatible_edit_buttons_row
|
1035 |
-
]
|
1036 |
-
)
|
1037 |
|
1038 |
-
|
1039 |
-
|
1040 |
-
score3_description, score4_description, score5_description]:
|
1041 |
-
component.change(
|
1042 |
-
fn=show_compatible_edit_buttons,
|
1043 |
-
inputs=[
|
1044 |
-
eval_criteria_text,
|
1045 |
-
eval_criteria_previous,
|
1046 |
-
score1_description,
|
1047 |
-
score1_previous,
|
1048 |
-
score2_description,
|
1049 |
-
score2_previous,
|
1050 |
-
score3_description,
|
1051 |
-
score3_previous,
|
1052 |
-
score4_description,
|
1053 |
-
score4_previous,
|
1054 |
-
score5_description,
|
1055 |
-
score5_previous
|
1056 |
-
],
|
1057 |
-
outputs=compatible_edit_buttons_row
|
1058 |
-
)
|
1059 |
|
1060 |
-
if
|
1061 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import anthropic
|
3 |
+
from together import Together
|
4 |
+
import cohere
|
5 |
import json
|
6 |
import re
|
7 |
+
import os
|
8 |
+
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from prompts import (
|
10 |
+
JUDGE_SYSTEM_PROMPT,
|
11 |
+
PROMETHEUS_PROMPT,
|
12 |
+
PROMETHEUS_PROMPT_WITH_REFERENCE,
|
13 |
+
ATLA_PROMPT,
|
14 |
+
ATLA_PROMPT_WITH_REFERENCE,
|
15 |
+
FLOW_JUDGE_PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
+
from transformers import AutoTokenizer
|
18 |
+
|
19 |
+
# Initialize clients
|
20 |
+
anthropic_client = anthropic.Anthropic()
|
21 |
+
openai_client = OpenAI()
|
22 |
+
together_client = Together()
|
23 |
+
hf_api_key = os.getenv("HF_API_KEY")
|
24 |
+
flow_judge_api_key = os.getenv("FLOW_JUDGE_API_KEY")
|
25 |
+
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
|
26 |
+
|
27 |
+
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
28 |
+
"""Get response from OpenAI API"""
|
|
|
|
|
29 |
try:
|
30 |
+
response = openai_client.chat.completions.create(
|
31 |
+
model=model_name,
|
32 |
+
messages=[
|
33 |
+
{"role": "system", "content": system_prompt},
|
34 |
+
{"role": "user", "content": prompt},
|
35 |
+
],
|
36 |
+
max_completion_tokens=max_tokens,
|
37 |
+
temperature=temperature,
|
38 |
+
)
|
39 |
+
return response.choices[0].message.content
|
40 |
+
except Exception as e:
|
41 |
+
return f"Error with OpenAI model {model_name}: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
44 |
+
"""Get response from Anthropic API"""
|
45 |
+
try:
|
46 |
+
response = anthropic_client.messages.create(
|
47 |
+
model=model_name,
|
48 |
+
max_tokens=max_tokens,
|
49 |
+
temperature=temperature,
|
50 |
+
system=system_prompt,
|
51 |
+
messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
|
52 |
+
)
|
53 |
+
return response.content[0].text
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error with Anthropic model {model_name}: {str(e)}"
|
56 |
|
57 |
+
def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
58 |
+
"""Get response from Together API"""
|
59 |
+
try:
|
60 |
+
response = together_client.chat.completions.create(
|
61 |
+
model=model_name,
|
62 |
+
messages=[
|
63 |
+
{"role": "system", "content": system_prompt},
|
64 |
+
{"role": "user", "content": prompt},
|
65 |
+
],
|
66 |
+
max_tokens=max_tokens,
|
67 |
+
temperature=temperature,
|
68 |
+
stream=False,
|
69 |
+
)
|
70 |
+
return response.choices[0].message.content
|
71 |
+
except Exception as e:
|
72 |
+
return f"Error with Together model {model_name}: {str(e)}"
|
73 |
|
74 |
+
def get_prometheus_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
75 |
+
"""Get response from Hugging Face model"""
|
76 |
+
try:
|
77 |
+
headers = {
|
78 |
+
"Accept": "application/json",
|
79 |
+
"Authorization": f"Bearer {hf_api_key}",
|
80 |
+
"Content-Type": "application/json"
|
81 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Create messages list for chat template
|
84 |
+
messages = []
|
85 |
+
if system_prompt:
|
86 |
+
messages.append({"role": "system", "content": system_prompt})
|
87 |
+
messages.append({"role": "user", "content": prompt})
|
88 |
+
|
89 |
+
# Apply chat template
|
90 |
+
model_id = "prometheus-eval/prometheus-7b-v2.0"
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
92 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
93 |
+
|
94 |
+
payload = {
|
95 |
+
"inputs": formatted_prompt,
|
96 |
+
"parameters": {
|
97 |
+
"max_new_tokens": max_tokens,
|
98 |
+
"return_full_text": False,
|
99 |
+
"temperature": temperature
|
100 |
+
}
|
101 |
+
}
|
102 |
+
|
103 |
+
response = requests.post(
|
104 |
+
"https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud",
|
105 |
+
headers=headers,
|
106 |
+
json=payload
|
107 |
+
)
|
108 |
+
return response.json()[0]["generated_text"]
|
109 |
+
except Exception as e:
|
110 |
+
return f"Error with Hugging Face model {model_name}: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
113 |
+
"""Get response from HF endpoint for Atla model"""
|
114 |
+
try:
|
115 |
+
headers = {
|
116 |
+
"Accept": "application/json",
|
117 |
+
"Authorization": f"Bearer {hf_api_key}",
|
118 |
+
"Content-Type": "application/json"
|
119 |
+
}
|
120 |
+
|
121 |
+
# Create messages list for chat template
|
122 |
+
messages = []
|
123 |
+
if system_prompt:
|
124 |
+
messages.append({"role": "system", "content": system_prompt})
|
125 |
+
messages.append({"role": "user", "content": prompt})
|
126 |
+
|
127 |
+
# Apply chat template
|
128 |
+
model_id = "meta-llama/Llama-3.1-8B"
|
129 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
130 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
131 |
+
|
132 |
+
payload = {
|
133 |
+
"inputs": formatted_prompt,
|
134 |
+
"parameters": {
|
135 |
+
"max_new_tokens": max_tokens,
|
136 |
+
"return_full_text": False,
|
137 |
+
"temperature": temperature,
|
138 |
+
"seed": 42,
|
139 |
+
"add_generation_prompt": True
|
140 |
+
}
|
141 |
+
}
|
142 |
+
|
143 |
+
response = requests.post(
|
144 |
+
"https://azk0vbxyrc64s2v2.us-east-1.aws.endpoints.huggingface.cloud",
|
145 |
+
headers=headers,
|
146 |
+
json=payload
|
147 |
+
)
|
148 |
+
return response.json()[0]["generated_text"]
|
149 |
+
except Exception as e:
|
150 |
+
return f"Error with Atla model {model_name}: {str(e)}"
|
151 |
|
152 |
+
def get_flow_judge_response(model_name, prompt, max_tokens=500, temperature=0.1, top_p=0.95) -> str:
|
153 |
+
"""Get response from Flow Judge"""
|
154 |
+
try:
|
155 |
+
response = requests.post(
|
156 |
+
"https://tsukuyomi.tailfa581.ts.net/v1/chat/completions",
|
157 |
+
headers={
|
158 |
+
"Content-Type": "application/json",
|
159 |
+
"Authorization": f"Bearer {flow_judge_api_key}"
|
160 |
+
},
|
161 |
+
json={
|
162 |
+
"model": model_name,
|
163 |
+
"messages": [
|
164 |
+
{"role": "user", "content": prompt}
|
165 |
+
],
|
166 |
+
"max_tokens": max_tokens,
|
167 |
+
"temperature": temperature,
|
168 |
+
"top_p": top_p
|
169 |
+
}
|
170 |
+
)
|
171 |
+
response.raise_for_status()
|
172 |
+
return response.json()["choices"][0]['message']['content']
|
173 |
+
except Exception as e:
|
174 |
+
return f"Error with Flow Judge completions model {model_name}: {str(e)}"
|
175 |
|
176 |
+
def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
177 |
+
"""Get response from Cohere API"""
|
178 |
+
try:
|
179 |
+
response = cohere_client.chat(
|
180 |
+
model=model_name,
|
181 |
+
messages=[
|
182 |
+
{"role": "system", "content": system_prompt},
|
183 |
+
{"role": "user", "content": prompt}
|
184 |
+
],
|
185 |
+
max_tokens=max_tokens,
|
186 |
+
temperature=temperature
|
187 |
+
)
|
188 |
+
# Extract the text from the content items
|
189 |
+
content_items = response.message.content
|
190 |
+
if isinstance(content_items, list):
|
191 |
+
# Get the text from the first content item
|
192 |
+
return content_items[0].text
|
193 |
+
return str(content_items) # Fallback if it's not a list
|
194 |
+
except Exception as e:
|
195 |
+
return f"Error with Cohere model {model_name}: {str(e)}"
|
196 |
+
|
197 |
+
def get_model_response(
|
198 |
+
model_name,
|
199 |
+
model_info,
|
200 |
+
prompt_data,
|
201 |
+
use_reference=False,
|
202 |
+
max_tokens=500,
|
203 |
+
temperature=0
|
204 |
+
):
|
205 |
+
"""Get response from appropriate API based on model organization"""
|
206 |
+
if not model_info:
|
207 |
+
return "Model not found or unsupported."
|
208 |
+
|
209 |
+
api_model = model_info["api_model"]
|
210 |
+
organization = model_info["organization"]
|
211 |
+
|
212 |
+
# Determine if model is Prometheus or Atla or Flow Judge
|
213 |
+
is_prometheus = (organization == "Prometheus")
|
214 |
+
is_atla = (organization == "Atla")
|
215 |
+
is_flow_judge = (organization == "Flow AI")
|
216 |
+
# For non-Prometheus/Atla models/Flow Judge, use the Judge system prompt
|
217 |
+
system_prompt = None if (is_prometheus or is_atla or is_flow_judge) else JUDGE_SYSTEM_PROMPT
|
218 |
+
|
219 |
+
# Select the appropriate base prompt
|
220 |
+
|
221 |
+
if is_atla:
|
222 |
+
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
223 |
+
elif is_flow_judge:
|
224 |
+
base_prompt = FLOW_JUDGE_PROMPT
|
225 |
else:
|
226 |
+
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE if use_reference else PROMETHEUS_PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
# For non-Prometheus/non-Atla models, replace the specific instruction
|
229 |
+
if not (is_prometheus or is_atla or is_flow_judge):
|
230 |
+
base_prompt = base_prompt.replace(
|
231 |
+
'3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"',
|
232 |
+
'3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.'
|
233 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
+
try:
|
236 |
+
if not is_flow_judge:
|
237 |
+
# Format the prompt with the provided data, only using available keys
|
238 |
+
final_prompt = base_prompt.format(
|
239 |
+
human_input=prompt_data['human_input'],
|
240 |
+
ai_response=prompt_data['ai_response'],
|
241 |
+
ground_truth_input=prompt_data.get('ground_truth_input', ''),
|
242 |
+
eval_criteria=prompt_data['eval_criteria'],
|
243 |
+
score1_desc=prompt_data['score1_desc'],
|
244 |
+
score2_desc=prompt_data['score2_desc'],
|
245 |
+
score3_desc=prompt_data['score3_desc'],
|
246 |
+
score4_desc=prompt_data['score4_desc'],
|
247 |
+
score5_desc=prompt_data['score5_desc']
|
248 |
)
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
else:
|
251 |
+
human_input = f"<user_input>\n{prompt_data['human_input']}\n</user_input>"
|
252 |
+
ai_response = f"<response>\n{prompt_data['ai_response']}\n</response>"
|
253 |
+
ground_truth=prompt_data.get('ground_truth_input', '')
|
254 |
+
if ground_truth:
|
255 |
+
response_reference = f"<response_reference>\n{ground_truth}\n</response_reference>"
|
256 |
+
else:
|
257 |
+
response_reference = ""
|
258 |
+
eval_criteria = prompt_data['eval_criteria']
|
259 |
+
score1_desc = f"- Score 1: {prompt_data['score1_desc']}\n"
|
260 |
+
score2_desc = f"- Score 2: {prompt_data['score2_desc']}\n"
|
261 |
+
score3_desc = f"- Score 3: {prompt_data['score3_desc']}\n"
|
262 |
+
score4_desc = f"- Score 4: {prompt_data['score4_desc']}\n"
|
263 |
+
score5_desc = f"- Score 5: {prompt_data['score5_desc']}"
|
264 |
+
rubric = score1_desc + score2_desc + score3_desc + score4_desc + score5_desc
|
265 |
+
if response_reference:
|
266 |
+
inputs = human_input + "\n"+ response_reference
|
267 |
+
else:
|
268 |
+
inputs = human_input
|
269 |
+
final_prompt = base_prompt.format(
|
270 |
+
INPUTS=inputs,
|
271 |
+
OUTPUT=ai_response,
|
272 |
+
EVALUATION_CRITERIA=eval_criteria,
|
273 |
+
RUBRIC=rubric
|
274 |
)
|
275 |
+
|
276 |
+
except KeyError as e:
|
277 |
+
return f"Error formatting prompt: Missing required field {str(e)}"
|
278 |
|
279 |
+
try:
|
280 |
+
if organization == "OpenAI":
|
281 |
+
return get_openai_response(
|
282 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
283 |
+
)
|
284 |
+
elif organization == "Anthropic":
|
285 |
+
return get_anthropic_response(
|
286 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
287 |
+
)
|
288 |
+
elif organization == "Prometheus":
|
289 |
+
return get_prometheus_response(
|
290 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
291 |
+
)
|
292 |
+
elif organization == "Atla":
|
293 |
+
return get_atla_response(
|
294 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
295 |
+
)
|
296 |
+
elif organization == "Cohere":
|
297 |
+
return get_cohere_response(
|
298 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
299 |
+
)
|
300 |
+
elif organization == "Flow AI":
|
301 |
+
return get_flow_judge_response(
|
302 |
+
api_model, final_prompt, max_tokens, temperature
|
303 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
else:
|
305 |
+
# All other organizations use Together API
|
306 |
+
return get_together_response(
|
307 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
308 |
+
)
|
309 |
+
except Exception as e:
|
310 |
+
return f"Error with {organization} model {model_name}: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
def parse_model_response(response):
|
313 |
+
try:
|
314 |
+
# Debug print
|
315 |
+
print(f"Raw model response: {response}")
|
316 |
+
|
317 |
+
# If response is already a dictionary, use it directly
|
318 |
+
if isinstance(response, dict):
|
319 |
+
return str(response.get("result", "N/A")), response.get("feedback", "N/A")
|
320 |
+
|
321 |
+
# First try to parse the entire response as JSON
|
322 |
+
try:
|
323 |
+
data = json.loads(response)
|
324 |
+
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
325 |
+
except json.JSONDecodeError:
|
326 |
+
# If that fails (typically for smaller models), try to find JSON within the response
|
327 |
+
json_match = re.search(r"{.*}", response, re.DOTALL)
|
328 |
+
if json_match:
|
329 |
+
data = json.loads(json_match.group(0))
|
330 |
+
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
331 |
+
else:
|
332 |
+
return "Error", f"Invalid response format returned - here is the raw model response: {response}"
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
+
except Exception as e:
|
335 |
+
# Debug print for error case
|
336 |
+
print(f"Failed to parse response: {str(e)}")
|
|
|
|
|
337 |
|
338 |
+
# If the error message itself contains valid JSON, try to parse that
|
339 |
+
try:
|
340 |
+
error_json_match = re.search(r"{.*}", str(e), re.DOTALL)
|
341 |
+
if error_json_match:
|
342 |
+
data = json.loads(error_json_match.group(0))
|
343 |
+
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
344 |
+
except:
|
345 |
+
pass
|
346 |
|
347 |
+
return "Error", f"Failed to parse response: {response}"
|
348 |
+
|
349 |
+
def prometheus_parse_model_response(output):
|
350 |
+
try:
|
351 |
+
print(f"Raw model response: {output}")
|
352 |
+
output = output.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
+
# Remove "Feedback:" prefix if present (case insensitive)
|
355 |
+
output = re.sub(r'^feedback:\s*', '', output, flags=re.IGNORECASE)
|
|
|
356 |
|
357 |
+
# New pattern to match [RESULT] X at the beginning
|
358 |
+
begin_result_pattern = r'^\[RESULT\]\s*(\d+)\s*\n*(.*?)$'
|
359 |
+
begin_match = re.search(begin_result_pattern, output, re.DOTALL | re.IGNORECASE)
|
360 |
+
if begin_match:
|
361 |
+
score = int(begin_match.group(1))
|
362 |
+
feedback = begin_match.group(2).strip()
|
363 |
+
return str(score), feedback
|
364 |
+
|
365 |
+
# Existing patterns for end-of-string results...
|
366 |
+
pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?"
|
367 |
+
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
|
368 |
+
if match:
|
369 |
+
feedback = match.group(1).strip()
|
370 |
+
score = int(match.group(2))
|
371 |
+
return str(score), feedback
|
372 |
+
|
373 |
+
# If no match, try to match "... Score: X"
|
374 |
+
pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?"
|
375 |
+
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
|
376 |
+
if match:
|
377 |
+
feedback = match.group(1).strip()
|
378 |
+
score = int(match.group(2))
|
379 |
+
return str(score), feedback
|
380 |
+
|
381 |
+
# Pattern to handle [Score X] at the end
|
382 |
+
pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$"
|
383 |
+
match = re.search(pattern, output, re.DOTALL)
|
384 |
+
if match:
|
385 |
+
feedback = match.group(1).strip()
|
386 |
+
score = int(match.group(2))
|
387 |
+
return str(score), feedback
|
388 |
+
|
389 |
+
# Final fallback attempt
|
390 |
+
pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$"
|
391 |
+
match = re.search(pattern, output)
|
392 |
+
if match:
|
393 |
+
score = int(match.group(1))
|
394 |
+
feedback = output[:match.start()].rstrip()
|
395 |
+
# Remove any trailing brackets from feedback
|
396 |
+
feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip()
|
397 |
+
return str(score), feedback
|
398 |
+
|
399 |
+
return "Error", f"Failed to parse response: {output}"
|
400 |
+
|
401 |
+
except Exception as e:
|
402 |
+
print(f"Failed to parse response: {str(e)}")
|
403 |
+
return "Error", f"Exception during parsing: {str(e)}"
|
404 |
+
|
405 |
+
def atla_parse_model_response(output):
|
406 |
+
"""Parse response from ATLA model"""
|
407 |
+
try:
|
408 |
+
print(f"Raw Atla model response: {output}")
|
409 |
+
output = output.strip()
|
410 |
|
411 |
+
# Look for the Reasoning and Result sections
|
412 |
+
reasoning_match = re.search(r'\*\*Reasoning:\*\*(.*?)(?=\*\*Result:|$)', output, re.DOTALL)
|
413 |
+
result_match = re.search(r'\*\*Result:\*\*\s*(\d+)', output)
|
414 |
+
|
415 |
+
if reasoning_match and result_match:
|
416 |
+
feedback = reasoning_match.group(1).strip()
|
417 |
+
score = result_match.group(1)
|
418 |
+
return str(score), feedback
|
419 |
+
|
420 |
+
return "Error", f"Failed to parse ATLA response format: {output}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
+
except Exception as e:
|
423 |
+
print(f"Failed to parse ATLA response: {str(e)}")
|
424 |
+
return "Error", f"Exception during parsing: {str(e)}"
|
425 |
+
|
426 |
+
def flow_judge_parse_model_response(output):
|
427 |
+
try:
|
428 |
+
print(f"Raw model response: {output}")
|
429 |
+
# Convert multiple line breaks to single ones and strip whitespace
|
430 |
+
output = re.sub(r'\n{2,}', '\n', output.strip())
|
431 |
+
|
432 |
+
# Compile regex patterns
|
433 |
+
feedback_pattern = re.compile(r"<feedback>\s*(.*?)\s*</feedback>", re.DOTALL)
|
434 |
+
score_pattern = re.compile(r"<score>\s*(\d+)\s*</score>", re.DOTALL)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
+
feedback_match = feedback_pattern.search(output)
|
437 |
+
score_match = score_pattern.search(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
+
if feedback_match or not score_match:
|
440 |
+
feedback = feedback_match.group(1).strip()
|
441 |
+
score = int(score_match.group(1).strip())
|
442 |
+
return str(score), feedback
|
443 |
+
|
444 |
+
return "Error", f"Failed to parse response: {output}"
|
445 |
+
|
446 |
+
except Exception as e:
|
447 |
+
print(f"Failed to parse response: {str(e)}")
|
448 |
+
return "Error", f"Exception during parsing: {str(e)}"
|