Spaces:
Running
Running
Create leaderboard.py
Browse files- leaderboard.py +114 -0
leaderboard.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from datetime import datetime, timezone
|
3 |
+
from typing import Dict, List
|
4 |
+
|
5 |
+
# Constants
|
6 |
+
DEFAULT_ELO = 1200 # Starting ELO for new models
|
7 |
+
K_FACTOR = 32 # Standard chess K-factor
|
8 |
+
|
9 |
+
def get_leaderboard(model_data: Dict, voting_data: List, show_preliminary=True):
|
10 |
+
"""Generate leaderboard data using votes from MongoDB."""
|
11 |
+
# Initialize dictionaries for tracking
|
12 |
+
ratings = defaultdict(lambda: DEFAULT_ELO)
|
13 |
+
matches = defaultdict(int)
|
14 |
+
|
15 |
+
# Process each vote
|
16 |
+
for vote in voting_data:
|
17 |
+
try:
|
18 |
+
model_a = vote.get("model_a")
|
19 |
+
model_b = vote.get("model_b")
|
20 |
+
winner = vote.get("winner")
|
21 |
+
|
22 |
+
# Skip if models aren't in current model_data
|
23 |
+
if (
|
24 |
+
not all([model_a, model_b, winner])
|
25 |
+
or model_a not in model_data
|
26 |
+
or model_b not in model_data
|
27 |
+
):
|
28 |
+
continue
|
29 |
+
|
30 |
+
# Update match counts
|
31 |
+
matches[model_a] += 1
|
32 |
+
matches[model_b] += 1
|
33 |
+
|
34 |
+
# Calculate ELO changes
|
35 |
+
elo_a = ratings[model_a]
|
36 |
+
elo_b = ratings[model_b]
|
37 |
+
|
38 |
+
# Expected scores
|
39 |
+
expected_a = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
|
40 |
+
expected_b = 1 - expected_a
|
41 |
+
|
42 |
+
# Actual scores
|
43 |
+
score_a = 1 if winner == "A" else 0 if winner == "B" else 0.5
|
44 |
+
score_b = 1 - score_a
|
45 |
+
|
46 |
+
# Update ratings
|
47 |
+
ratings[model_a] += K_FACTOR * (score_a - expected_a)
|
48 |
+
ratings[model_b] += K_FACTOR * (score_b - expected_b)
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error processing vote: {e}")
|
52 |
+
continue
|
53 |
+
|
54 |
+
# Generate leaderboard data
|
55 |
+
leaderboard = []
|
56 |
+
for model in model_data.keys():
|
57 |
+
votes = matches[model]
|
58 |
+
# Skip models with < 500 votes if show_preliminary is False
|
59 |
+
if not show_preliminary and votes < 500:
|
60 |
+
continue
|
61 |
+
|
62 |
+
elo = ratings[model]
|
63 |
+
ci = 1.96 * (400 / (votes + 1) ** 0.5) if votes > 0 else 0
|
64 |
+
data = {
|
65 |
+
"Model": model,
|
66 |
+
"ELO Score": f"{int(elo)}",
|
67 |
+
"95% CI": f"±{int(ci)}",
|
68 |
+
"# Votes": votes,
|
69 |
+
"Organization": model_data[model]["organization"],
|
70 |
+
"License": model_data[model]["license"],
|
71 |
+
}
|
72 |
+
leaderboard.append(data)
|
73 |
+
|
74 |
+
# Sort leaderboard by ELO score in descending order
|
75 |
+
leaderboard.sort(key=lambda x: float(x["ELO Score"]), reverse=True)
|
76 |
+
|
77 |
+
return leaderboard
|
78 |
+
|
79 |
+
def get_leaderboard_stats(model_data: Dict, voting_data: List) -> str:
|
80 |
+
"""Get summary statistics for the leaderboard."""
|
81 |
+
now = datetime.now(timezone.utc)
|
82 |
+
total_votes = len(voting_data)
|
83 |
+
total_models = len(model_data)
|
84 |
+
last_updated = now.replace(minute=0, second=0, microsecond=0).strftime(
|
85 |
+
"%B %d, %Y at %H:00 UTC"
|
86 |
+
)
|
87 |
+
|
88 |
+
return f"""
|
89 |
+
### Leaderboard Stats
|
90 |
+
- **Total Models**: {total_models}
|
91 |
+
- **Total Votes**: {total_votes}
|
92 |
+
- **Last Updated**: {last_updated}
|
93 |
+
"""
|
94 |
+
|
95 |
+
def calculate_elo_change(rating_a: float, rating_b: float, winner: str) -> tuple[float, float]:
|
96 |
+
"""Calculate ELO rating changes for both players."""
|
97 |
+
expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400))
|
98 |
+
expected_b = 1 - expected_a
|
99 |
+
|
100 |
+
if winner == "A":
|
101 |
+
score_a, score_b = 1, 0
|
102 |
+
elif winner == "B":
|
103 |
+
score_a, score_b = 0, 1
|
104 |
+
else: # Handle ties
|
105 |
+
score_a, score_b = 0.5, 0.5
|
106 |
+
|
107 |
+
change_a = K_FACTOR * (score_a - expected_a)
|
108 |
+
change_b = K_FACTOR * (score_b - expected_b)
|
109 |
+
|
110 |
+
return change_a, change_b
|
111 |
+
|
112 |
+
def get_model_rankings(leaderboard: List[Dict]) -> Dict[str, int]:
|
113 |
+
"""Get current rankings of all models from leaderboard data."""
|
114 |
+
return {entry["Model"]: idx + 1 for idx, entry in enumerate(leaderboard)}
|