Spaces:
Running
Running
import json | |
import re | |
import random | |
from collections import defaultdict | |
from datetime import datetime, timezone | |
import hashlib | |
from dotenv import load_dotenv | |
load_dotenv() | |
import gradio as gr | |
from gen_api_answer import get_model_response, parse_model_response | |
from db import add_vote, create_db_connection, get_votes | |
from utils import Vote | |
from common import ( | |
POLICY_CONTENT, | |
ACKNOWLEDGEMENTS, | |
DEFAULT_EVAL_PROMPT, | |
DEFAULT_INPUT, | |
DEFAULT_RESPONSE, | |
CSS_STYLES, | |
MAIN_TITLE, | |
HOW_IT_WORKS, | |
BATTLE_RULES, | |
EVAL_DESCRIPTION, | |
VOTING_HEADER, | |
) | |
from example_metrics import EXAMPLE_METRICS | |
import hashlib | |
# Model and ELO score data | |
DEFAULT_ELO = 1500 # Starting ELO for new models | |
K_FACTOR = 32 # Standard chess K-factor, adjust as needed | |
elo_scores = defaultdict(lambda: DEFAULT_ELO) | |
vote_counts = defaultdict(int) | |
db = create_db_connection() | |
votes_collection = get_votes(db) | |
current_time = datetime.now() | |
# Load the model_data from JSONL | |
def load_model_data(): | |
model_data = {} | |
try: | |
with open("data/models.jsonl", "r") as f: | |
for line in f: | |
model = json.loads(line) | |
model_data[model["name"]] = { | |
"organization": model["organization"], | |
"license": model["license"], | |
"api_model": model["api_model"], | |
} | |
except FileNotFoundError: | |
print("Warning: models.jsonl not found") | |
return {} | |
return model_data | |
model_data = load_model_data() | |
def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id): | |
vote = Vote( | |
timestamp=datetime.now().isoformat(), | |
prompt=prompt, | |
response_a=response_a, | |
response_b=response_b, | |
model_a=model_a, | |
model_b=model_b, | |
winner=winner, | |
judge_id=judge_id, | |
) | |
add_vote(vote, db) | |
def parse_variables(prompt): | |
# Extract variables enclosed in double curly braces | |
variables = re.findall(r"{{(.*?)}}", prompt) | |
# Remove duplicates while preserving order | |
seen = set() | |
variables = [ | |
x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip())) | |
] | |
return variables | |
def get_final_prompt(eval_prompt, variable_values): | |
# Replace variables in the eval prompt with their values | |
for var, val in variable_values.items(): | |
eval_prompt = eval_prompt.replace("{{" + var + "}}", val) | |
return eval_prompt | |
def submit_prompt(eval_prompt, *variable_values): | |
try: | |
variables = parse_variables(eval_prompt) | |
variable_values_dict = {var: val for var, val in zip(variables, variable_values)} | |
final_prompt = get_final_prompt(eval_prompt, variable_values_dict) | |
models = list(model_data.keys()) | |
model1, model2 = random.sample(models, 2) | |
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1) | |
response_a = get_model_response(model_a, model_data.get(model_a), final_prompt) | |
response_b = get_model_response(model_b, model_data.get(model_b), final_prompt) | |
return ( | |
response_a, | |
response_b, | |
gr.update(visible=True), | |
gr.update(visible=True), | |
model_a, | |
model_b, | |
final_prompt, | |
) | |
except Exception as e: | |
print(f"Error in submit_prompt: {str(e)}") | |
return ( | |
"Error generating response", | |
"Error generating response", | |
gr.update(visible=False), | |
gr.update(visible=False), | |
None, | |
None, | |
None, | |
) | |
def get_ip(request: gr.Request) -> str: | |
"""Get and hash the IP address from the request.""" | |
if "cf-connecting-ip" in request.headers: | |
ip = request.headers["cf-connecting-ip"] | |
elif "x-forwarded-for" in request.headers: | |
ip = request.headers["x-forwarded-for"] | |
if "," in ip: | |
ip = ip.split(",")[0] | |
else: | |
ip = request.client.host | |
# Hash the IP address for privacy | |
return hashlib.sha256(ip.encode()).hexdigest()[:16] | |
def vote( | |
choice, | |
model_a, | |
model_b, | |
final_prompt, | |
score_a, | |
critique_a, | |
score_b, | |
critique_b, | |
request: gr.Request, | |
): | |
# Get hashed IP as judge_id | |
judge_id = get_ip(request) | |
# Update ELO scores based on user choice | |
elo_a = elo_scores[model_a] | |
elo_b = elo_scores[model_b] | |
# Calculate expected scores | |
Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400)) | |
Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400)) | |
# Assign actual scores | |
if choice == "A": | |
Sa, Sb = 1, 0 | |
elif choice == "B": | |
Sa, Sb = 0, 1 | |
else: | |
Sa, Sb = 0.5, 0.5 | |
# Update scores and vote counts | |
elo_scores[model_a] += K_FACTOR * (Sa - Ea) | |
elo_scores[model_b] += K_FACTOR * (Sb - Eb) | |
vote_counts[model_a] += 1 | |
vote_counts[model_b] += 1 | |
# Format the full responses with score and critique | |
response_a = f"""{score_a} | |
{critique_a}""" | |
response_b = f"""{score_b} | |
{critique_b}""" | |
# Store the vote data with the final prompt | |
store_vote_data( | |
final_prompt, response_a, response_b, model_a, model_b, choice, judge_id | |
) | |
# Return updates for UI components | |
return [ | |
gr.update(visible=False), # action_buttons_row | |
gr.update(value=f"*Model: {model_a}*"), # model_name_a | |
gr.update(value=f"*Model: {model_b}*"), # model_name_b | |
gr.update(interactive=True), # send_btn | |
gr.update(visible=True, interactive=True), # regenerate_button | |
] | |
def get_current_votes(): | |
"""Get current votes from database.""" | |
return get_votes(db) | |
def get_leaderboard(): | |
"""Generate leaderboard data using fresh votes from MongoDB.""" | |
# Get fresh voting data | |
voting_data = get_current_votes() | |
print(f"Fetched {len(voting_data)} votes from database") # Debug log | |
# Initialize dictionaries for tracking | |
ratings = defaultdict(lambda: DEFAULT_ELO) | |
matches = defaultdict(int) | |
# Process each vote | |
for vote in voting_data: | |
try: | |
model_a = vote.get("model_a") | |
model_b = vote.get("model_b") | |
winner = vote.get("winner") | |
# Skip if models aren't in current model_data | |
if ( | |
not all([model_a, model_b, winner]) | |
or model_a not in model_data | |
or model_b not in model_data | |
): | |
continue | |
# Update match counts | |
matches[model_a] += 1 | |
matches[model_b] += 1 | |
# Calculate ELO changes | |
elo_a = ratings[model_a] | |
elo_b = ratings[model_b] | |
# Expected scores | |
expected_a = 1 / (1 + 10 ** ((elo_b - elo_a) / 400)) | |
expected_b = 1 - expected_a | |
# Actual scores | |
score_a = 1 if winner == "A" else 0 if winner == "B" else 0.5 | |
score_b = 1 - score_a | |
# Update ratings | |
ratings[model_a] += K_FACTOR * (score_a - expected_a) | |
ratings[model_b] += K_FACTOR * (score_b - expected_b) | |
except Exception as e: | |
print(f"Error processing vote: {e}") | |
continue | |
# Generate leaderboard data | |
leaderboard = [] | |
for model in model_data.keys(): | |
votes = matches[model] | |
elo = ratings[model] | |
ci = 1.96 * (400 / (votes + 1) ** 0.5) if votes > 0 else 0 | |
data = { | |
"Model": model, | |
"ELO Score": f"{elo:.2f}", | |
"95% CI": f"±{ci:.2f}", | |
"# Votes": votes, | |
"Organization": model_data[model]["organization"], | |
"License": model_data[model]["license"], | |
} | |
leaderboard.append(data) | |
# Sort leaderboard by ELO score in descending order | |
leaderboard.sort(key=lambda x: float(x["ELO Score"]), reverse=True) | |
return leaderboard | |
def regenerate_prompt(model_a, model_b, eval_prompt, *variable_values): | |
variables = parse_variables(eval_prompt) | |
variable_values_dict = {var: val for var, val in zip(variables, variable_values)} | |
final_prompt = get_final_prompt(eval_prompt, variable_values_dict) | |
# Get available models excluding the previous ones | |
available_models = [m for m in model_data.keys() if m not in (model_a, model_b)] | |
# If we have enough models for new pairs | |
if len(available_models) >= 2: | |
model1, model2 = random.sample(available_models, 2) | |
else: | |
# Fallback to allowing previous models if necessary | |
model1, model2 = random.sample(list(model_data.keys()), 2) | |
response_a = get_model_response(model1, model_data.get(model1), final_prompt) | |
response_b = get_model_response(model2, model_data.get(model2), final_prompt) | |
# Parse the responses | |
score_a, critique_a = parse_model_response(response_a) | |
score_b, critique_b = parse_model_response(response_b) | |
return ( | |
score_a, # score_a textbox | |
critique_a, # critique_a textbox | |
score_b, # score_b textbox | |
critique_b, # critique_b textbox | |
gr.update(visible=True), # action_buttons_row | |
gr.update(value="*Model: Unknown*"), # model_name_a | |
gr.update(value="*Model: Unknown*"), # model_name_b | |
model1, # model_a_state | |
model2, # model_b_state | |
) | |
def calculate_elo_change(rating_a, rating_b, winner): | |
"""Calculate ELO rating changes for both players.""" | |
expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400)) | |
expected_b = 1 - expected_a | |
if winner == "A": | |
score_a, score_b = 1, 0 | |
elif winner == "B": | |
score_a, score_b = 0, 1 | |
else: # Handle ties | |
score_a, score_b = 0.5, 0.5 | |
change_a = K_FACTOR * (score_a - expected_a) | |
change_b = K_FACTOR * (score_b - expected_b) | |
return change_a, change_b | |
def update_leaderboard(): | |
"""Generate leaderboard DataFrame using fresh votes from MongoDB.""" | |
# Get fresh voting data | |
voting_data = get_current_votes() | |
print(f"Found {len(voting_data)} votes in database") | |
matches = defaultdict(int) | |
# Process each vote chronologically | |
for vote in voting_data: | |
# Extract model names from the vote document | |
try: | |
model_a = vote.get("model_a") | |
model_b = vote.get("model_b") | |
winner = vote.get("winner") | |
print(f"Processing vote: {model_a} vs {model_b}, winner: {winner}") | |
# Skip if any required field is missing or models aren't in current model_data | |
if not all([model_a, model_b, winner]): | |
print(f"Missing required fields in vote: {vote}") | |
continue | |
if model_a not in model_data: | |
print(f"Model A '{model_a}' not found in model_data") | |
continue | |
if model_b not in model_data: | |
print(f"Model B '{model_b}' not found in model_data") | |
continue | |
# Update match counts | |
matches[model_a] += 1 | |
matches[model_b] += 1 | |
print( | |
f"Updated matches - {model_a}: {matches[model_a]}, {model_b}: {matches[model_b]}" | |
) | |
except Exception as e: | |
print(f"Error processing vote: {e}") | |
print(f"Problematic vote data: {vote}") | |
continue | |
# Update the display_leaderboard function | |
def display_leaderboard(): | |
df = update_leaderboard() | |
return gr.DataFrame( | |
value=df, | |
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"], | |
datatype=["str", "number", "str", "number", "str", "str", "str"], | |
row_count=(len(df) + 1, "dynamic"), | |
) | |
# Update the leaderboard table definition in the UI | |
leaderboard_table = gr.Dataframe( | |
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"], | |
datatype=["str", "number", "str", "number", "str", "str", "str"], | |
) | |
def get_leaderboard_stats(): | |
"""Get summary statistics for the leaderboard.""" | |
now = datetime.now(timezone.utc) | |
total_votes = len(get_current_votes()) | |
total_models = len(model_data) | |
last_updated = now.replace(minute=0, second=0, microsecond=0).strftime( | |
"%B %d, %Y at %H:00 UTC" | |
) | |
return f""" | |
### Leaderboard Stats | |
- **Total Models**: {total_models} | |
- **Total Votes**: {total_votes} | |
- **Last Updated**: {last_updated} | |
""" | |
def set_example_metric(metric_name): | |
if metric_name == "Custom": | |
variables = parse_variables(DEFAULT_EVAL_PROMPT) | |
variable_values = [] | |
for var in variables: | |
if var == "input": | |
variable_values.append(DEFAULT_INPUT) | |
elif var == "response": | |
variable_values.append(DEFAULT_RESPONSE) | |
else: | |
variable_values.append("") # Default empty value | |
# Pad variable_values to match the length of variable_rows | |
while len(variable_values) < len(variable_rows): | |
variable_values.append("") | |
return [DEFAULT_EVAL_PROMPT] + variable_values | |
metric_data = EXAMPLE_METRICS[metric_name] | |
variables = parse_variables(metric_data["prompt"]) | |
variable_values = [] | |
for var in variables: | |
value = metric_data.get(var, "") # Default to empty string if not found | |
variable_values.append(value) | |
# Pad variable_values to match the length of variable_rows | |
while len(variable_values) < len(variable_rows): | |
variable_values.append("") | |
return [metric_data["prompt"]] + variable_values | |
# Select random metric at startup | |
def get_random_metric(): | |
metrics = list(EXAMPLE_METRICS.keys()) | |
return set_example_metric(random.choice(metrics)) | |
with gr.Blocks(theme="default", css=CSS_STYLES) as demo: | |
gr.Markdown(MAIN_TITLE) | |
gr.Markdown(HOW_IT_WORKS) | |
with gr.Tabs(): | |
with gr.TabItem("Judge Arena"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(BATTLE_RULES) | |
gr.Markdown(EVAL_DESCRIPTION) | |
# Add Example Metrics Section | |
with gr.Accordion("Evaluator Prompt Templates", open=False): | |
with gr.Row(): | |
custom_btn = gr.Button("Custom", variant="secondary") | |
hallucination_btn = gr.Button("Hallucination") | |
precision_btn = gr.Button("Precision") | |
recall_btn = gr.Button("Recall") | |
coherence_btn = gr.Button("Logical coherence") | |
faithfulness_btn = gr.Button("Faithfulness") | |
# Eval Prompt and Variables side by side | |
with gr.Row(): | |
# Left column - Eval Prompt | |
with gr.Column(scale=1): | |
eval_prompt = gr.TextArea( | |
label="Evaluator Prompt", | |
lines=1, | |
value=DEFAULT_EVAL_PROMPT, | |
placeholder="Type your eval prompt here... denote variables in {{curly brackets}} to be populated on the right.", | |
show_label=True, | |
) | |
# Right column - Variable Mapping | |
with gr.Column(scale=1): | |
gr.Markdown("### Sample to test the evaluator") | |
# Create inputs for up to 5 variables, with first two visible by default | |
variable_rows = [] | |
for i in range(5): | |
initial_visibility = True if i < 2 else False | |
with gr.Group(visible=initial_visibility) as var_row: | |
# Set default labels for the first two inputs | |
default_label = ( | |
"input" if i == 0 else "response" if i == 1 else "" | |
) | |
var_input = gr.Textbox( | |
container=True, | |
label=default_label, # Add default label here | |
) | |
variable_rows.append((var_row, var_input)) | |
# Send button | |
with gr.Row(elem_classes="send-button-row"): | |
send_btn = gr.Button( | |
value="Test the evaluators", variant="primary", size="lg", scale=1 | |
) | |
# Add divider heading for model outputs | |
gr.Markdown(VOTING_HEADER) | |
# Model Responses side-by-side | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Model A") | |
score_a = gr.Textbox(label="Score", interactive=False) | |
critique_a = gr.TextArea(label="Critique", lines=8, interactive=False) | |
model_name_a = gr.Markdown("*Model: Unknown*") | |
with gr.Column(): | |
gr.Markdown("### Model B") | |
score_b = gr.Textbox(label="Score", interactive=False) | |
critique_b = gr.TextArea(label="Critique", lines=8, interactive=False) | |
model_name_b = gr.Markdown("*Model: Unknown*") | |
# Initially hide vote buttons and regenerate button | |
with gr.Row(visible=False) as action_buttons_row: | |
vote_a = gr.Button("Choose A", variant="primary") | |
vote_tie = gr.Button("Tie", variant="secondary") | |
vote_b = gr.Button("Choose B", variant="primary") | |
regenerate_button = gr.Button( | |
"Regenerate with different models", variant="secondary", visible=False | |
) | |
# Add spacing and acknowledgements at the bottom | |
gr.Markdown(ACKNOWLEDGEMENTS) | |
with gr.TabItem("Leaderboard"): | |
stats_display = gr.Markdown() | |
leaderboard_table = gr.Dataframe( | |
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"], | |
datatype=["str", "number", "str", "number", "str", "str", "str"], | |
) | |
with gr.TabItem("Policy"): | |
gr.Markdown(POLICY_CONTENT) | |
# Define state variables for model tracking | |
model_a_state = gr.State() | |
model_b_state = gr.State() | |
final_prompt_state = gr.State() | |
# Update variable inputs based on the eval prompt | |
def update_variables(eval_prompt): | |
variables = parse_variables(eval_prompt) | |
updates = [] | |
for i in range(len(variable_rows)): | |
var_row, var_input = variable_rows[i] | |
if i < len(variables): | |
var_name = variables[i] | |
# Set the number of lines based on the variable name | |
if var_name == "response": | |
lines = 4 # Adjust this number as needed | |
else: | |
lines = 1 # Default to single line for other variables | |
updates.extend( | |
[ | |
gr.update(visible=True), # Show the variable row | |
gr.update( | |
label=var_name, visible=True, lines=lines | |
), # Update label and lines | |
] | |
) | |
else: | |
updates.extend( | |
[ | |
gr.update(visible=False), # Hide the variable row | |
gr.update(value="", visible=False), # Clear value when hidden | |
] | |
) | |
return updates | |
eval_prompt.change( | |
fn=update_variables, | |
inputs=eval_prompt, | |
outputs=[item for sublist in variable_rows for item in sublist], | |
) | |
# Regenerate button functionality | |
regenerate_button.click( | |
fn=regenerate_prompt, | |
inputs=[model_a_state, model_b_state, eval_prompt] | |
+ [var_input for _, var_input in variable_rows], | |
outputs=[ | |
score_a, | |
critique_a, | |
score_b, | |
critique_b, | |
action_buttons_row, | |
model_name_a, | |
model_name_b, | |
model_a_state, | |
model_b_state, | |
], | |
) | |
# Update model names after responses are generated | |
def update_model_names(model_a, model_b): | |
return gr.update(value=f"*Model: {model_a}*"), gr.update( | |
value=f"*Model: {model_b}*" | |
) | |
# Store the last submitted prompt and variables for comparison | |
last_submission = gr.State({}) | |
# Update the vote button click handlers | |
vote_a.click( | |
fn=vote, | |
inputs=[ | |
gr.State("A"), # Choice | |
model_a_state, | |
model_b_state, | |
final_prompt_state, | |
score_a, | |
critique_a, | |
score_b, | |
critique_b, | |
], | |
outputs=[ | |
action_buttons_row, | |
model_name_a, | |
model_name_b, | |
send_btn, | |
regenerate_button, | |
], | |
) | |
vote_b.click( | |
fn=vote, | |
inputs=[ | |
gr.State("B"), # Choice | |
model_a_state, | |
model_b_state, | |
final_prompt_state, | |
score_a, | |
critique_a, | |
score_b, | |
critique_b, | |
], | |
outputs=[ | |
action_buttons_row, | |
model_name_a, | |
model_name_b, | |
send_btn, | |
regenerate_button, | |
], | |
) | |
vote_tie.click( | |
fn=vote, | |
inputs=[ | |
gr.State("Tie"), # Choice | |
model_a_state, | |
model_b_state, | |
final_prompt_state, | |
score_a, | |
critique_a, | |
score_b, | |
critique_b, | |
], | |
outputs=[ | |
action_buttons_row, | |
model_name_a, | |
model_name_b, | |
send_btn, | |
regenerate_button, | |
], | |
) | |
# Update the send button handler to store the submitted inputs | |
def submit_and_store(prompt, *variables): | |
# Create a copy of the current submission | |
current_submission = {"prompt": prompt, "variables": variables} | |
# Get the responses | |
( | |
response_a, | |
response_b, | |
buttons_visible, | |
regen_visible, | |
model_a, | |
model_b, | |
final_prompt, | |
) = submit_prompt(prompt, *variables) | |
# Parse the responses | |
score_a, critique_a = parse_model_response(response_a) | |
score_b, critique_b = parse_model_response(response_b) | |
# Update the last_submission state with the current values | |
last_submission.value = current_submission | |
return ( | |
score_a, | |
critique_a, | |
score_b, | |
critique_b, | |
buttons_visible, | |
gr.update( | |
visible=True, interactive=True | |
), # Show and enable regenerate button | |
model_a, | |
model_b, | |
final_prompt, # Add final_prompt to state | |
gr.update(value="*Model: Unknown*"), | |
gr.update(value="*Model: Unknown*"), | |
) | |
send_btn.click( | |
fn=submit_and_store, | |
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows], | |
outputs=[ | |
score_a, | |
critique_a, | |
score_b, | |
critique_b, | |
action_buttons_row, | |
regenerate_button, | |
model_a_state, | |
model_b_state, | |
final_prompt_state, # Add final_prompt_state to outputs | |
model_name_a, | |
model_name_b, | |
], | |
) | |
# Update the input change handlers to also disable regenerate button | |
def handle_input_changes(prompt, *variables): | |
"""Enable send button and manage regenerate button based on input changes""" | |
last_inputs = last_submission.value | |
current_inputs = {"prompt": prompt, "variables": variables} | |
inputs_changed = last_inputs != current_inputs | |
return [ | |
gr.update(interactive=True), # send button always enabled | |
gr.update( | |
interactive=not inputs_changed | |
), # regenerate button disabled if inputs changed | |
] | |
# Update the change handlers for prompt and variables | |
eval_prompt.change( | |
fn=handle_input_changes, | |
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows], | |
outputs=[send_btn, regenerate_button], | |
) | |
for _, var_input in variable_rows: | |
var_input.change( | |
fn=handle_input_changes, | |
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows], | |
outputs=[send_btn, regenerate_button], | |
) | |
# Update the leaderboard | |
def refresh_leaderboard(): | |
"""Refresh the leaderboard data and stats.""" | |
leaderboard = get_leaderboard() | |
data = [ | |
[ | |
entry["Model"], | |
float(entry["ELO Score"]), | |
entry["95% CI"], | |
entry["# Votes"], | |
entry["Organization"], | |
entry["License"], | |
] | |
for entry in leaderboard | |
] | |
stats = get_leaderboard_stats() | |
return [gr.update(value=data), gr.update(value=stats)] | |
# Add the load event at the very end, just before demo.launch() | |
demo.load( | |
fn=refresh_leaderboard, inputs=None, outputs=[leaderboard_table, stats_display] | |
) | |
# Add click handlers for metric buttons | |
outputs_list = [eval_prompt] + [var_input for _, var_input in variable_rows] | |
custom_btn.click(fn=lambda: set_example_metric("Custom"), outputs=outputs_list) | |
hallucination_btn.click( | |
fn=lambda: set_example_metric("Hallucination"), outputs=outputs_list | |
) | |
precision_btn.click(fn=lambda: set_example_metric("Precision"), outputs=outputs_list) | |
recall_btn.click(fn=lambda: set_example_metric("Recall"), outputs=outputs_list) | |
coherence_btn.click( | |
fn=lambda: set_example_metric("Logical_Coherence"), outputs=outputs_list | |
) | |
faithfulness_btn.click( | |
fn=lambda: set_example_metric("Faithfulness"), outputs=outputs_list | |
) | |
# Set default metric at startup | |
demo.load( | |
fn=lambda: set_example_metric("Custom"), | |
outputs=[eval_prompt] + [var_input for _, var_input in variable_rows], | |
) | |
if __name__ == "__main__": | |
demo.launch() |