Atharva-28 commited on
Commit
9c6431b
1 Parent(s): b83d0aa

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +106 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ import os
5
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
+ import google.generativeai as genai
7
+ from langchain.vectorstores import FAISS
8
+ from langchain_google_genai import ChatGoogleGenerativeAI
9
+ from langchain.chains.question_answering import load_qa_chain
10
+ from langchain.prompts import PromptTemplate
11
+ from dotenv import load_dotenv
12
+
13
+ load_dotenv()
14
+ os.getenv("GOOGLE_API_KEY")
15
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
16
+
17
+
18
+
19
+
20
+
21
+
22
+ def get_pdf_text(pdf_docs):
23
+ text=""
24
+ for pdf in pdf_docs:
25
+ pdf_reader= PdfReader(pdf)
26
+ for page in pdf_reader.pages:
27
+ text+= page.extract_text()
28
+ return text
29
+
30
+
31
+
32
+ def get_text_chunks(text):
33
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
34
+ chunks = text_splitter.split_text(text)
35
+ return chunks
36
+
37
+
38
+ def get_vector_store(text_chunks):
39
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
40
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
41
+ vector_store.save_local("faiss_index")
42
+
43
+
44
+ def get_conversational_chain():
45
+
46
+ prompt_template = """
47
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
48
+ provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
49
+ Context:\n {context}?\n
50
+ Question: \n{question}\n
51
+
52
+ Answer:
53
+ """
54
+
55
+ model = ChatGoogleGenerativeAI(model="gemini-pro",
56
+ temperature=0.3)
57
+
58
+ prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
59
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
60
+
61
+ return chain
62
+
63
+
64
+
65
+ def user_input(user_question):
66
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
67
+
68
+ new_db = FAISS.load_local("faiss_index", embeddings)
69
+ docs = new_db.similarity_search(user_question)
70
+
71
+ chain = get_conversational_chain()
72
+
73
+
74
+ response = chain(
75
+ {"input_documents":docs, "question": user_question}
76
+ , return_only_outputs=True)
77
+
78
+ print(response)
79
+ st.write("Reply: ", response["output_text"])
80
+
81
+
82
+
83
+
84
+ def main():
85
+ st.set_page_config("Chat PDF")
86
+ st.header("Chat with PDF using Gemini💁")
87
+
88
+ user_question = st.text_input("Ask a Question from the PDF Files")
89
+
90
+ if user_question:
91
+ user_input(user_question)
92
+
93
+ with st.sidebar:
94
+ st.title("Menu:")
95
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
96
+ if st.button("Submit & Process"):
97
+ with st.spinner("Processing..."):
98
+ raw_text = get_pdf_text(pdf_docs)
99
+ text_chunks = get_text_chunks(raw_text)
100
+ get_vector_store(text_chunks)
101
+ st.success("Done")
102
+
103
+
104
+
105
+ if __name__ == "__main__":
106
+ main()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ google-generativeai
3
+ python-dotenv
4
+ langchain
5
+ PyPDF2
6
+ chromadb
7
+ faiss-cpu
8
+ langchain_google_genai