|
|
|
|
|
|
|
|
|
import argparse |
|
import torch |
|
from safetensors.torch import load_file, save_file, safe_open |
|
from tqdm import tqdm |
|
from library import train_util, model_util |
|
import numpy as np |
|
|
|
MIN_SV = 1e-6 |
|
|
|
|
|
|
|
def load_state_dict(file_name, dtype): |
|
if model_util.is_safetensors(file_name): |
|
sd = load_file(file_name) |
|
with safe_open(file_name, framework="pt") as f: |
|
metadata = f.metadata() |
|
else: |
|
sd = torch.load(file_name, map_location='cpu') |
|
metadata = None |
|
|
|
for key in list(sd.keys()): |
|
if type(sd[key]) == torch.Tensor: |
|
sd[key] = sd[key].to(dtype) |
|
|
|
return sd, metadata |
|
|
|
|
|
def save_to_file(file_name, model, state_dict, dtype, metadata): |
|
if dtype is not None: |
|
for key in list(state_dict.keys()): |
|
if type(state_dict[key]) == torch.Tensor: |
|
state_dict[key] = state_dict[key].to(dtype) |
|
|
|
if model_util.is_safetensors(file_name): |
|
save_file(model, file_name, metadata) |
|
else: |
|
torch.save(model, file_name) |
|
|
|
|
|
|
|
|
|
def index_sv_cumulative(S, target): |
|
original_sum = float(torch.sum(S)) |
|
cumulative_sums = torch.cumsum(S, dim=0)/original_sum |
|
index = int(torch.searchsorted(cumulative_sums, target)) + 1 |
|
index = max(1, min(index, len(S)-1)) |
|
|
|
return index |
|
|
|
|
|
def index_sv_fro(S, target): |
|
S_squared = S.pow(2) |
|
s_fro_sq = float(torch.sum(S_squared)) |
|
sum_S_squared = torch.cumsum(S_squared, dim=0)/s_fro_sq |
|
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1 |
|
index = max(1, min(index, len(S)-1)) |
|
|
|
return index |
|
|
|
|
|
def index_sv_ratio(S, target): |
|
max_sv = S[0] |
|
min_sv = max_sv/target |
|
index = int(torch.sum(S > min_sv).item()) |
|
index = max(1, min(index, len(S)-1)) |
|
|
|
return index |
|
|
|
|
|
|
|
def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1): |
|
out_size, in_size, kernel_size, _ = weight.size() |
|
U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device)) |
|
|
|
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale) |
|
lora_rank = param_dict["new_rank"] |
|
|
|
U = U[:, :lora_rank] |
|
S = S[:lora_rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:lora_rank, :] |
|
|
|
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu() |
|
param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu() |
|
del U, S, Vh, weight |
|
return param_dict |
|
|
|
|
|
def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1): |
|
out_size, in_size = weight.size() |
|
|
|
U, S, Vh = torch.linalg.svd(weight.to(device)) |
|
|
|
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale) |
|
lora_rank = param_dict["new_rank"] |
|
|
|
U = U[:, :lora_rank] |
|
S = S[:lora_rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:lora_rank, :] |
|
|
|
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu() |
|
param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu() |
|
del U, S, Vh, weight |
|
return param_dict |
|
|
|
|
|
def merge_conv(lora_down, lora_up, device): |
|
in_rank, in_size, kernel_size, k_ = lora_down.shape |
|
out_size, out_rank, _, _ = lora_up.shape |
|
assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch" |
|
|
|
lora_down = lora_down.to(device) |
|
lora_up = lora_up.to(device) |
|
|
|
merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1) |
|
weight = merged.reshape(out_size, in_size, kernel_size, kernel_size) |
|
del lora_up, lora_down |
|
return weight |
|
|
|
|
|
def merge_linear(lora_down, lora_up, device): |
|
in_rank, in_size = lora_down.shape |
|
out_size, out_rank = lora_up.shape |
|
assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch" |
|
|
|
lora_down = lora_down.to(device) |
|
lora_up = lora_up.to(device) |
|
|
|
weight = lora_up @ lora_down |
|
del lora_up, lora_down |
|
return weight |
|
|
|
|
|
|
|
|
|
def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1): |
|
param_dict = {} |
|
|
|
if dynamic_method=="sv_ratio": |
|
|
|
new_rank = index_sv_ratio(S, dynamic_param) + 1 |
|
new_alpha = float(scale*new_rank) |
|
|
|
elif dynamic_method=="sv_cumulative": |
|
|
|
new_rank = index_sv_cumulative(S, dynamic_param) + 1 |
|
new_alpha = float(scale*new_rank) |
|
|
|
elif dynamic_method=="sv_fro": |
|
|
|
new_rank = index_sv_fro(S, dynamic_param) + 1 |
|
new_alpha = float(scale*new_rank) |
|
else: |
|
new_rank = rank |
|
new_alpha = float(scale*new_rank) |
|
|
|
|
|
if S[0] <= MIN_SV: |
|
new_rank = 1 |
|
new_alpha = float(scale*new_rank) |
|
elif new_rank > rank: |
|
new_rank = rank |
|
new_alpha = float(scale*new_rank) |
|
|
|
|
|
|
|
s_sum = torch.sum(torch.abs(S)) |
|
s_rank = torch.sum(torch.abs(S[:new_rank])) |
|
|
|
S_squared = S.pow(2) |
|
s_fro = torch.sqrt(torch.sum(S_squared)) |
|
s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank])) |
|
fro_percent = float(s_red_fro/s_fro) |
|
|
|
param_dict["new_rank"] = new_rank |
|
param_dict["new_alpha"] = new_alpha |
|
param_dict["sum_retained"] = (s_rank)/s_sum |
|
param_dict["fro_retained"] = fro_percent |
|
param_dict["max_ratio"] = S[0]/S[new_rank - 1] |
|
|
|
return param_dict |
|
|
|
|
|
def resize_lora_model(lora_sd, new_rank, save_dtype, device, dynamic_method, dynamic_param, verbose): |
|
network_alpha = None |
|
network_dim = None |
|
verbose_str = "\n" |
|
fro_list = [] |
|
|
|
|
|
for key, value in lora_sd.items(): |
|
if network_alpha is None and 'alpha' in key: |
|
network_alpha = value |
|
if network_dim is None and 'lora_down' in key and len(value.size()) == 2: |
|
network_dim = value.size()[0] |
|
if network_alpha is not None and network_dim is not None: |
|
break |
|
if network_alpha is None: |
|
network_alpha = network_dim |
|
|
|
scale = network_alpha/network_dim |
|
|
|
if dynamic_method: |
|
print(f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}") |
|
|
|
lora_down_weight = None |
|
lora_up_weight = None |
|
|
|
o_lora_sd = lora_sd.copy() |
|
block_down_name = None |
|
block_up_name = None |
|
|
|
with torch.no_grad(): |
|
for key, value in tqdm(lora_sd.items()): |
|
weight_name = None |
|
if 'lora_down' in key: |
|
block_down_name = key.split(".")[0] |
|
weight_name = key.split(".")[-1] |
|
lora_down_weight = value |
|
else: |
|
continue |
|
|
|
|
|
block_up_name = block_down_name |
|
lora_up_weight = lora_sd.get(block_up_name + '.lora_up.' + weight_name, None) |
|
lora_alpha = lora_sd.get(block_down_name + '.alpha', None) |
|
|
|
weights_loaded = (lora_down_weight is not None and lora_up_weight is not None) |
|
|
|
if weights_loaded: |
|
|
|
conv2d = (len(lora_down_weight.size()) == 4) |
|
if lora_alpha is None: |
|
scale = 1.0 |
|
else: |
|
scale = lora_alpha/lora_down_weight.size()[0] |
|
|
|
if conv2d: |
|
full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device) |
|
param_dict = extract_conv(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale) |
|
else: |
|
full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device) |
|
param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale) |
|
|
|
if verbose: |
|
max_ratio = param_dict['max_ratio'] |
|
sum_retained = param_dict['sum_retained'] |
|
fro_retained = param_dict['fro_retained'] |
|
if not np.isnan(fro_retained): |
|
fro_list.append(float(fro_retained)) |
|
|
|
verbose_str+=f"{block_down_name:75} | " |
|
verbose_str+=f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}" |
|
|
|
if verbose and dynamic_method: |
|
verbose_str+=f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n" |
|
else: |
|
verbose_str+=f"\n" |
|
|
|
new_alpha = param_dict['new_alpha'] |
|
o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous() |
|
o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous() |
|
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict['new_alpha']).to(save_dtype) |
|
|
|
block_down_name = None |
|
block_up_name = None |
|
lora_down_weight = None |
|
lora_up_weight = None |
|
weights_loaded = False |
|
del param_dict |
|
|
|
if verbose: |
|
print(verbose_str) |
|
|
|
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}") |
|
print("resizing complete") |
|
return o_lora_sd, network_dim, new_alpha |
|
|
|
|
|
def resize(args): |
|
|
|
def str_to_dtype(p): |
|
if p == 'float': |
|
return torch.float |
|
if p == 'fp16': |
|
return torch.float16 |
|
if p == 'bf16': |
|
return torch.bfloat16 |
|
return None |
|
|
|
if args.dynamic_method and not args.dynamic_param: |
|
raise Exception("If using dynamic_method, then dynamic_param is required") |
|
|
|
merge_dtype = str_to_dtype('float') |
|
save_dtype = str_to_dtype(args.save_precision) |
|
if save_dtype is None: |
|
save_dtype = merge_dtype |
|
|
|
print("loading Model...") |
|
lora_sd, metadata = load_state_dict(args.model, merge_dtype) |
|
|
|
print("Resizing Lora...") |
|
state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose) |
|
|
|
|
|
if metadata is None: |
|
metadata = {} |
|
|
|
comment = metadata.get("ss_training_comment", "") |
|
|
|
if not args.dynamic_method: |
|
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}" |
|
metadata["ss_network_dim"] = str(args.new_rank) |
|
metadata["ss_network_alpha"] = str(new_alpha) |
|
else: |
|
metadata["ss_training_comment"] = f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}" |
|
metadata["ss_network_dim"] = 'Dynamic' |
|
metadata["ss_network_alpha"] = 'Dynamic' |
|
|
|
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) |
|
metadata["sshs_model_hash"] = model_hash |
|
metadata["sshs_legacy_hash"] = legacy_hash |
|
|
|
print(f"saving model to: {args.save_to}") |
|
save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata) |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--save_precision", type=str, default=None, |
|
choices=[None, "float", "fp16", "bf16"], help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat") |
|
parser.add_argument("--new_rank", type=int, default=4, |
|
help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") |
|
parser.add_argument("--save_to", type=str, default=None, |
|
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors") |
|
parser.add_argument("--model", type=str, default=None, |
|
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors") |
|
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") |
|
parser.add_argument("--verbose", action="store_true", |
|
help="Display verbose resizing information / rank変更時の詳細情報を出力する") |
|
parser.add_argument("--dynamic_method", type=str, default=None, choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"], |
|
help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank") |
|
parser.add_argument("--dynamic_param", type=float, default=None, |
|
help="Specify target for dynamic reduction") |
|
|
|
return parser |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
resize(args) |
|
|