kohya_ss / library /common_gui.py
Ateras's picture
Upload folder using huggingface_hub
fe6327d
raw
history blame
30.6 kB
from tkinter import filedialog, Tk
from easygui import msgbox
import os
import re
import gradio as gr
import easygui
import shutil
import sys
import json
from library.custom_logging import setup_logging
from datetime import datetime
# Set up logging
log = setup_logging()
folder_symbol = '\U0001f4c2' # πŸ“‚
refresh_symbol = '\U0001f504' # πŸ”„
save_style_symbol = '\U0001f4be' # πŸ’Ύ
document_symbol = '\U0001F4C4' # πŸ“„
# define a list of substrings to search for v2 base models
V2_BASE_MODELS = [
'stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# define a list of substrings to search for v_parameterization models
V_PARAMETERIZATION_MODELS = [
'stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# define a list of substrings to v1.x models
V1_MODELS = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
# define a list of substrings to search for SDXL base models
SDXL_MODELS = [
'stabilityai/stable-diffusion-xl-base-0.9',
'stabilityai/stable-diffusion-xl-refiner-0.9'
]
# define a list of substrings to search for
ALL_PRESET_MODELS = V2_BASE_MODELS + V_PARAMETERIZATION_MODELS + V1_MODELS + SDXL_MODELS
ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_POD_ID']
def check_if_model_exist(
output_name, output_dir, save_model_as, headless=False
):
if headless:
log.info(
'Headless mode, skipping verification if model already exist... if model already exist it will be overwritten...'
)
return False
if save_model_as in ['diffusers', 'diffusers_safetendors']:
ckpt_folder = os.path.join(output_dir, output_name)
if os.path.isdir(ckpt_folder):
msg = f'A diffuser model with the same name {ckpt_folder} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
log.info(
'Aborting training due to existing model with same name...'
)
return True
elif save_model_as in ['ckpt', 'safetensors']:
ckpt_file = os.path.join(output_dir, output_name + '.' + save_model_as)
if os.path.isfile(ckpt_file):
msg = f'A model with the same file name {ckpt_file} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
log.info(
'Aborting training due to existing model with same name...'
)
return True
else:
log.info(
'Can\'t verify if existing model exist when save model is set a "same as source model", continuing to train model...'
)
return False
return False
def output_message(msg='', title='', headless=False):
if headless:
log.info(msg)
else:
msgbox(msg=msg, title=title)
def update_my_data(my_data):
# Update the optimizer based on the use_8bit_adam flag
use_8bit_adam = my_data.get('use_8bit_adam', False)
my_data.setdefault('optimizer', 'AdamW8bit' if use_8bit_adam else 'AdamW')
# Update model_list to custom if empty or pretrained_model_name_or_path is not a preset model
model_list = my_data.get('model_list', [])
pretrained_model_name_or_path = my_data.get(
'pretrained_model_name_or_path', ''
)
if (
not model_list
or pretrained_model_name_or_path not in ALL_PRESET_MODELS
):
my_data['model_list'] = 'custom'
# Convert values to int if they are strings
for key in ['epoch', 'save_every_n_epochs', 'lr_warmup']:
value = my_data.get(key, 0)
if isinstance(value, str) and value.strip().isdigit():
my_data[key] = int(value)
elif not value:
my_data[key] = 0
# Convert values to float if they are strings
for key in ['noise_offset', 'learning_rate', 'text_encoder_lr', 'unet_lr']:
value = my_data.get(key, 0)
if isinstance(value, str) and value.strip().isdigit():
my_data[key] = float(value)
elif not value:
my_data[key] = 0
# Update LoRA_type if it is set to LoCon
if my_data.get('LoRA_type', 'Standard') == 'LoCon':
my_data['LoRA_type'] = 'LyCORIS/LoCon'
# Update model save choices due to changes for LoRA and TI training
if 'save_model_as' in my_data:
if (
my_data.get('LoRA_type') or my_data.get('num_vectors_per_token')
) and my_data.get('save_model_as') not in ['safetensors', 'ckpt']:
message = 'Updating save_model_as to safetensors because the current value in the config file is no longer applicable to {}'
if my_data.get('LoRA_type'):
log.info(message.format('LoRA'))
if my_data.get('num_vectors_per_token'):
log.info(message.format('TI'))
my_data['save_model_as'] = 'safetensors'
return my_data
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
return (dir_path, file_name)
def get_file_path(
file_path='', default_extension='.json', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
# Create a hidden Tkinter root window
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
# Show the open file dialog and get the selected file path
file_path = filedialog.askopenfilename(
filetypes=(
(extension_name, f'*{default_extension}'),
('All files', '*.*'),
),
defaultextension=default_extension,
initialfile=initial_file,
initialdir=initial_dir,
)
# Destroy the hidden root window
root.destroy()
# If no file is selected, use the current file path
if not file_path:
file_path = current_file_path
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
return file_path
def get_any_file_path(file_path=''):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if file_path == '':
file_path = current_file_path
return file_path
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
def get_folder_path(folder_path=''):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_folder_path = folder_path
initial_dir, initial_file = get_dir_and_file(folder_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
folder_path = filedialog.askdirectory(initialdir=initial_dir)
root.destroy()
if folder_path == '':
folder_path = current_folder_path
return folder_path
def get_saveasfile_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfile(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
# log.info(save_file_path)
if save_file_path == None:
file_path = current_file_path
else:
log.info(save_file_path.name)
file_path = save_file_path.name
# log.info(file_path)
return file_path
def get_saveasfilename_path(
file_path='', extensions='*', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfilename(
filetypes=(
(f'{extension_name}', f'{extensions}'),
('All files', '*'),
),
defaultextension=extensions,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if save_file_path == '':
file_path = current_file_path
else:
# log.info(save_file_path)
file_path = save_file_path
return file_path
def add_pre_postfix(
folder: str = '',
prefix: str = '',
postfix: str = '',
caption_file_ext: str = '.caption',
) -> None:
"""
Add prefix and/or postfix to the content of caption files within a folder.
If no caption files are found, create one with the requested prefix and/or postfix.
Args:
folder (str): Path to the folder containing caption files.
prefix (str, optional): Prefix to add to the content of the caption files.
postfix (str, optional): Postfix to add to the content of the caption files.
caption_file_ext (str, optional): Extension of the caption files.
"""
if prefix == '' and postfix == '':
return
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [
f for f in os.listdir(folder) if f.lower().endswith(image_extensions)
]
for image_file in image_files:
caption_file_name = os.path.splitext(image_file)[0] + caption_file_ext
caption_file_path = os.path.join(folder, caption_file_name)
if not os.path.exists(caption_file_path):
with open(caption_file_path, 'w', encoding='utf8') as f:
separator = ' ' if prefix and postfix else ''
f.write(f'{prefix}{separator}{postfix}')
else:
with open(caption_file_path, 'r+', encoding='utf8') as f:
content = f.read()
content = content.rstrip()
f.seek(0, 0)
prefix_separator = ' ' if prefix else ''
postfix_separator = ' ' if postfix else ''
f.write(
f'{prefix}{prefix_separator}{content}{postfix_separator}{postfix}'
)
def has_ext_files(folder_path: str, file_extension: str) -> bool:
"""
Check if there are any files with the specified extension in the given folder.
Args:
folder_path (str): Path to the folder containing files.
file_extension (str): Extension of the files to look for.
Returns:
bool: True if files with the specified extension are found, False otherwise.
"""
for file in os.listdir(folder_path):
if file.endswith(file_extension):
return True
return False
def find_replace(
folder_path: str = '',
caption_file_ext: str = '.caption',
search_text: str = '',
replace_text: str = '',
) -> None:
"""
Find and replace text in caption files within a folder.
Args:
folder_path (str, optional): Path to the folder containing caption files.
caption_file_ext (str, optional): Extension of the caption files.
search_text (str, optional): Text to search for in the caption files.
replace_text (str, optional): Text to replace the search text with.
"""
log.info('Running caption find/replace')
if not has_ext_files(folder_path, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder_path}...'
)
return
if search_text == '':
return
caption_files = [
f for f in os.listdir(folder_path) if f.endswith(caption_file_ext)
]
for caption_file in caption_files:
with open(
os.path.join(folder_path, caption_file), 'r', errors='ignore'
) as f:
content = f.read()
content = content.replace(search_text, replace_text)
with open(os.path.join(folder_path, caption_file), 'w') as f:
f.write(content)
def color_aug_changed(color_aug):
if color_aug:
msgbox(
'Disabling "Cache latent" because "Color augmentation" has been selected...'
)
return gr.Checkbox.update(value=False, interactive=False)
else:
return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
log.info(
f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
log.info(
f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(
model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
):
# Check if the given model_list is in the list of SDXL models
if str(model_list) in SDXL_MODELS:
log.info('SDXL model selected. Setting sdxl parameters')
v2 = gr.Checkbox.update(value=False, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=True, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V2 base models
if str(model_list) in V2_BASE_MODELS:
log.info('SD v2 base model selected. Setting --v2 parameter')
v2 = gr.Checkbox.update(value=True, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V parameterization models
if str(model_list) in V_PARAMETERIZATION_MODELS:
log.info(
'SD v2 model selected. Setting --v2 and --v_parameterization parameters'
)
v2 = gr.Checkbox.update(value=True, visible=False)
v_parameterization = gr.Checkbox.update(value=True, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V1 models
if str(model_list) in V1_MODELS:
log.info(
'SD v1.4 model selected.'
)
v2 = gr.Checkbox.update(value=False, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the model_list is set to 'custom'
if model_list == 'custom':
v2 = gr.Checkbox.update(visible=True)
v_parameterization = gr.Checkbox.update(visible=True)
sdxl = gr.Checkbox.update(visible=True)
pretrained_model_name_or_path = gr.Textbox.update(visible=True)
pretrained_model_name_or_path_file = gr.Button.update(visible=True)
pretrained_model_name_or_path_folder = gr.Button.update(visible=True)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
###
### Gradio common GUI section
###
def get_pretrained_model_name_or_path_file(
model_list, pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_any_file_path(
pretrained_model_name_or_path
)
# set_model_list(model_list, pretrained_model_name_or_path)
def get_int_or_default(kwargs, key, default_value=0):
value = kwargs.get(key, default_value)
if isinstance(value, int):
return value
elif isinstance(value, str):
return int(value)
elif isinstance(value, float):
return int(value)
else:
log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
return default_value
def get_float_or_default(kwargs, key, default_value=0.0):
value = kwargs.get(key, default_value)
if isinstance(value, float):
return value
elif isinstance(value, int):
return float(value)
elif isinstance(value, str):
return float(value)
else:
log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
return default_value
def get_str_or_default(kwargs, key, default_value=""):
value = kwargs.get(key, default_value)
if isinstance(value, str):
return value
elif isinstance(value, int):
return str(value)
elif isinstance(value, str):
return str(value)
else:
return default_value
def run_cmd_training(**kwargs):
run_cmd = ''
learning_rate = kwargs.get("learning_rate", "")
if learning_rate:
run_cmd += f' --learning_rate="{learning_rate}"'
lr_scheduler = kwargs.get("lr_scheduler", "")
if lr_scheduler:
run_cmd += f' --lr_scheduler="{lr_scheduler}"'
lr_warmup_steps = kwargs.get("lr_warmup_steps", "")
if lr_warmup_steps:
if lr_scheduler == 'constant':
log.info('Can\'t use LR warmup with LR Scheduler constant... ignoring...')
else:
run_cmd += f' --lr_warmup_steps="{lr_warmup_steps}"'
train_batch_size = kwargs.get("train_batch_size", "")
if train_batch_size:
run_cmd += f' --train_batch_size="{train_batch_size}"'
max_train_steps = kwargs.get("max_train_steps", "")
if max_train_steps:
run_cmd += f' --max_train_steps="{max_train_steps}"'
save_every_n_epochs = kwargs.get("save_every_n_epochs")
if save_every_n_epochs:
run_cmd += f' --save_every_n_epochs="{int(save_every_n_epochs)}"'
mixed_precision = kwargs.get("mixed_precision", "")
if mixed_precision:
run_cmd += f' --mixed_precision="{mixed_precision}"'
save_precision = kwargs.get("save_precision", "")
if save_precision:
run_cmd += f' --save_precision="{save_precision}"'
seed = kwargs.get("seed", "")
if seed != '':
run_cmd += f' --seed="{seed}"'
caption_extension = kwargs.get("caption_extension", "")
if caption_extension:
run_cmd += f' --caption_extension="{caption_extension}"'
cache_latents = kwargs.get('cache_latents')
if cache_latents:
run_cmd += ' --cache_latents'
cache_latents_to_disk = kwargs.get('cache_latents_to_disk')
if cache_latents_to_disk:
run_cmd += ' --cache_latents_to_disk'
optimizer_type = kwargs.get("optimizer", "AdamW")
run_cmd += f' --optimizer_type="{optimizer_type}"'
optimizer_args = kwargs.get("optimizer_args", "")
if optimizer_args != '':
run_cmd += f' --optimizer_args {optimizer_args}'
return run_cmd
def run_cmd_advanced_training(**kwargs):
run_cmd = ''
max_train_epochs = kwargs.get("max_train_epochs", "")
if max_train_epochs:
run_cmd += f' --max_train_epochs={max_train_epochs}'
max_data_loader_n_workers = kwargs.get("max_data_loader_n_workers", "")
if max_data_loader_n_workers:
run_cmd += f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
max_token_length = int(kwargs.get("max_token_length", 75))
if max_token_length > 75:
run_cmd += f' --max_token_length={max_token_length}'
clip_skip = int(kwargs.get("clip_skip", 1))
if clip_skip > 1:
run_cmd += f' --clip_skip={clip_skip}'
resume = kwargs.get("resume", "")
if resume:
run_cmd += f' --resume="{resume}"'
keep_tokens = int(kwargs.get("keep_tokens", 0))
if keep_tokens > 0:
run_cmd += f' --keep_tokens="{keep_tokens}"'
caption_dropout_every_n_epochs = int(kwargs.get("caption_dropout_every_n_epochs", 0))
if caption_dropout_every_n_epochs > 0:
run_cmd += f' --caption_dropout_every_n_epochs="{caption_dropout_every_n_epochs}"'
caption_dropout_rate = float(kwargs.get("caption_dropout_rate", 0))
if caption_dropout_rate > 0:
run_cmd += f' --caption_dropout_rate="{caption_dropout_rate}"'
vae_batch_size = int(kwargs.get("vae_batch_size", 0))
if vae_batch_size > 0:
run_cmd += f' --vae_batch_size="{vae_batch_size}"'
bucket_reso_steps = int(kwargs.get("bucket_reso_steps", 64))
run_cmd += f' --bucket_reso_steps={bucket_reso_steps}'
save_every_n_steps = int(kwargs.get("save_every_n_steps", 0))
if save_every_n_steps > 0:
run_cmd += f' --save_every_n_steps="{save_every_n_steps}"'
save_last_n_steps = int(kwargs.get("save_last_n_steps", 0))
if save_last_n_steps > 0:
run_cmd += f' --save_last_n_steps="{save_last_n_steps}"'
save_last_n_steps_state = int(kwargs.get("save_last_n_steps_state", 0))
if save_last_n_steps_state > 0:
run_cmd += f' --save_last_n_steps_state="{save_last_n_steps_state}"'
min_snr_gamma = int(kwargs.get("min_snr_gamma", 0))
if min_snr_gamma >= 1:
run_cmd += f' --min_snr_gamma={min_snr_gamma}'
min_timestep = int(kwargs.get("min_timestep", 0))
if min_timestep > 0:
run_cmd += f' --min_timestep={min_timestep}'
max_timestep = int(kwargs.get("max_timestep", 1000))
if max_timestep < 1000:
run_cmd += f' --max_timestep={max_timestep}'
save_state = kwargs.get('save_state')
if save_state:
run_cmd += ' --save_state'
mem_eff_attn = kwargs.get('mem_eff_attn')
if mem_eff_attn:
run_cmd += ' --mem_eff_attn'
color_aug = kwargs.get('color_aug')
if color_aug:
run_cmd += ' --color_aug'
flip_aug = kwargs.get('flip_aug')
if flip_aug:
run_cmd += ' --flip_aug'
shuffle_caption = kwargs.get('shuffle_caption')
if shuffle_caption:
run_cmd += ' --shuffle_caption'
gradient_checkpointing = kwargs.get('gradient_checkpointing')
if gradient_checkpointing:
run_cmd += ' --gradient_checkpointing'
full_fp16 = kwargs.get('full_fp16')
if full_fp16:
run_cmd += ' --full_fp16'
xformers = kwargs.get('xformers')
if xformers:
run_cmd += ' --xformers'
persistent_data_loader_workers = kwargs.get('persistent_data_loader_workers')
if persistent_data_loader_workers:
run_cmd += ' --persistent_data_loader_workers'
bucket_no_upscale = kwargs.get('bucket_no_upscale')
if bucket_no_upscale:
run_cmd += ' --bucket_no_upscale'
random_crop = kwargs.get('random_crop')
if random_crop:
run_cmd += ' --random_crop'
scale_v_pred_loss_like_noise_pred = kwargs.get('scale_v_pred_loss_like_noise_pred')
if scale_v_pred_loss_like_noise_pred:
run_cmd += ' --scale_v_pred_loss_like_noise_pred'
noise_offset_type = kwargs.get('noise_offset_type', 'Original')
if noise_offset_type == 'Original':
noise_offset = float(kwargs.get("noise_offset", 0))
if noise_offset > 0:
run_cmd += f' --noise_offset={noise_offset}'
adaptive_noise_scale = float(kwargs.get("adaptive_noise_scale", 0))
if adaptive_noise_scale != 0 and noise_offset > 0:
run_cmd += f' --adaptive_noise_scale={adaptive_noise_scale}'
else:
multires_noise_iterations = int(kwargs.get("multires_noise_iterations", 0))
if multires_noise_iterations > 0:
run_cmd += f' --multires_noise_iterations="{multires_noise_iterations}"'
multires_noise_discount = float(kwargs.get("multires_noise_discount", 0))
if multires_noise_discount > 0:
run_cmd += f' --multires_noise_discount="{multires_noise_discount}"'
additional_parameters = kwargs.get("additional_parameters", "")
if additional_parameters:
run_cmd += f' {additional_parameters}'
use_wandb = kwargs.get('use_wandb')
if use_wandb:
run_cmd += ' --log_with wandb'
wandb_api_key = kwargs.get("wandb_api_key", "")
if wandb_api_key:
run_cmd += f' --wandb_api_key="{wandb_api_key}"'
return run_cmd
def verify_image_folder_pattern(folder_path):
false_response = True # temporarily set to true to prevent stopping training in case of false positive
true_response = True
# Check if the folder exists
if not os.path.isdir(folder_path):
log.error(f"The provided path '{folder_path}' is not a valid folder. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
# Create a regular expression pattern to match the required sub-folder names
# The pattern should start with one or more digits (\d+) followed by an underscore (_)
# After the underscore, it should match one or more word characters (\w+), which can be letters, numbers, or underscores
# Example of a valid pattern matching name: 123_example_folder
pattern = r'^\d+_\w+'
# Get the list of sub-folders in the directory
subfolders = [
os.path.join(folder_path, subfolder)
for subfolder in os.listdir(folder_path)
if os.path.isdir(os.path.join(folder_path, subfolder))
]
# Check the pattern of each sub-folder
matching_subfolders = [subfolder for subfolder in subfolders if re.match(pattern, os.path.basename(subfolder))]
# Print non-matching sub-folders
non_matching_subfolders = set(subfolders) - set(matching_subfolders)
if non_matching_subfolders:
log.error(f"The following folders do not match the required pattern <number>_<text>: {', '.join(non_matching_subfolders)}")
log.error(f"Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
# Check if no sub-folders exist
if not matching_subfolders:
log.error(f"No image folders found in {folder_path}. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
log.info(f'Valid image folder names found in: {folder_path}')
return true_response
def SaveConfigFile(parameters, file_path: str, exclusion = ['file_path', 'save_as', 'headless', 'print_only']):
# Return the values of the variables as a dictionary
variables = {
name: value
for name, value in sorted(parameters, key=lambda x: x[0])
if name not in exclusion
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file, indent=2)
def save_to_file(content):
file_path = 'logs/print_command.txt'
with open(file_path, 'a') as file:
file.write(content + '\n')