Spaces:
Sleeping
Sleeping
import re | |
from g2p_en import G2p | |
from style_bert_vits2.constants import Languages | |
from style_bert_vits2.nlp import bert_models | |
from style_bert_vits2.nlp.english.cmudict import get_dict | |
from style_bert_vits2.nlp.symbols import PUNCTUATIONS, SYMBOLS | |
# Initialize global variables once | |
ARPA = { | |
"AH0", | |
"S", | |
"AH1", | |
"EY2", | |
"AE2", | |
"EH0", | |
"OW2", | |
"UH0", | |
"NG", | |
"B", | |
"G", | |
"AY0", | |
"M", | |
"AA0", | |
"F", | |
"AO0", | |
"ER2", | |
"UH1", | |
"IY1", | |
"AH2", | |
"DH", | |
"IY0", | |
"EY1", | |
"IH0", | |
"K", | |
"N", | |
"W", | |
"IY2", | |
"T", | |
"AA1", | |
"ER1", | |
"EH2", | |
"OY0", | |
"UH2", | |
"UW1", | |
"Z", | |
"AW2", | |
"AW1", | |
"V", | |
"UW2", | |
"AA2", | |
"ER", | |
"AW0", | |
"UW0", | |
"R", | |
"OW1", | |
"EH1", | |
"ZH", | |
"AE0", | |
"IH2", | |
"IH", | |
"Y", | |
"JH", | |
"P", | |
"AY1", | |
"EY0", | |
"OY2", | |
"TH", | |
"HH", | |
"D", | |
"ER0", | |
"CH", | |
"AO1", | |
"AE1", | |
"AO2", | |
"OY1", | |
"AY2", | |
"IH1", | |
"OW0", | |
"L", | |
"SH", | |
} | |
_g2p = G2p() | |
eng_dict = get_dict() | |
def g2p(text: str) -> tuple[list[str], list[int], list[int]]: | |
phones = [] | |
tones = [] | |
phone_len = [] | |
words = __text_to_words(text) | |
for word in words: | |
temp_phones, temp_tones = [], [] | |
if len(word) > 1 and "'" in word: | |
word = ["".join(word)] | |
for w in word: | |
if w in PUNCTUATIONS: | |
temp_phones.append(w) | |
temp_tones.append(0) | |
continue | |
if w.upper() in eng_dict: | |
phns, tns = __refine_syllables(eng_dict[w.upper()]) | |
temp_phones += [__post_replace_ph(i) for i in phns] | |
temp_tones += tns | |
else: | |
phone_list = list(filter(lambda p: p != " ", _g2p(w))) | |
phns, tns = [], [] | |
for ph in phone_list: | |
if ph in ARPA: | |
ph, tn = __refine_ph(ph) | |
phns.append(ph) | |
tns.append(tn) | |
else: | |
phns.append(ph) | |
tns.append(0) | |
temp_phones += [__post_replace_ph(i) for i in phns] | |
temp_tones += tns | |
phones += temp_phones | |
tones += temp_tones | |
phone_len.append(len(temp_phones)) | |
word2ph = [] | |
for token, pl in zip(words, phone_len): | |
word_len = len(token) | |
word2ph += __distribute_phone(pl, word_len) | |
phones = ["_"] + phones + ["_"] | |
tones = [0] + tones + [0] | |
word2ph = [1] + word2ph + [1] | |
assert len(phones) == len(tones), text | |
assert len(phones) == sum(word2ph), text | |
return phones, tones, word2ph | |
def __post_replace_ph(ph: str) -> str: | |
REPLACE_MAP = { | |
":": ",", | |
";": ",", | |
",": ",", | |
"。": ".", | |
"!": "!", | |
"?": "?", | |
"\n": ".", | |
"·": ",", | |
"、": ",", | |
"…": "...", | |
"···": "...", | |
"・・・": "...", | |
"v": "V", | |
} | |
if ph in REPLACE_MAP: | |
ph = REPLACE_MAP[ph] | |
if ph in SYMBOLS: | |
return ph | |
return "UNK" | |
def __refine_ph(phn: str) -> tuple[str, int]: | |
tone = 0 | |
if re.search(r"\d$", phn): | |
tone = int(phn[-1]) + 1 | |
phn = phn[:-1] | |
else: | |
tone = 3 | |
return phn.lower(), tone | |
def __refine_syllables(syllables: list[list[str]]) -> tuple[list[str], list[int]]: | |
tones = [] | |
phonemes = [] | |
for phn_list in syllables: | |
for phn in phn_list: | |
phn, tone = __refine_ph(phn) | |
phonemes.append(phn) | |
tones.append(tone) | |
return phonemes, tones | |
def __distribute_phone(n_phone: int, n_word: int) -> list[int]: | |
phones_per_word = [0] * n_word | |
for task in range(n_phone): | |
min_tasks = min(phones_per_word) | |
min_index = phones_per_word.index(min_tasks) | |
phones_per_word[min_index] += 1 | |
return phones_per_word | |
def __text_to_words(text: str) -> list[list[str]]: | |
tokenizer = bert_models.load_tokenizer(Languages.EN) | |
tokens = tokenizer.tokenize(text) | |
words = [] | |
for idx, t in enumerate(tokens): | |
if t.startswith("▁"): | |
words.append([t[1:]]) | |
elif t in PUNCTUATIONS: | |
if idx == len(tokens) - 1: | |
words.append([f"{t}"]) | |
elif ( | |
not tokens[idx + 1].startswith("▁") | |
and tokens[idx + 1] not in PUNCTUATIONS | |
): | |
if idx == 0: | |
words.append([]) | |
words[-1].append(f"{t}") | |
else: | |
words.append([f"{t}"]) | |
else: | |
if idx == 0: | |
words.append([]) | |
words[-1].append(f"{t}") | |
return words | |
if __name__ == "__main__": | |
# print(get_dict()) | |
# print(eng_word_to_phoneme("hello")) | |
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")) | |
# all_phones = set() | |
# eng_dict = get_dict() | |
# for k, syllables in eng_dict.items(): | |
# for group in syllables: | |
# for ph in group: | |
# all_phones.add(ph) | |
# print(all_phones) | |