litagin's picture
Bump ver
83d190a
raw
history blame
5.2 kB
import re
from g2p_en import G2p
from style_bert_vits2.constants import Languages
from style_bert_vits2.nlp import bert_models
from style_bert_vits2.nlp.english.cmudict import get_dict
from style_bert_vits2.nlp.symbols import PUNCTUATIONS, SYMBOLS
# Initialize global variables once
ARPA = {
"AH0",
"S",
"AH1",
"EY2",
"AE2",
"EH0",
"OW2",
"UH0",
"NG",
"B",
"G",
"AY0",
"M",
"AA0",
"F",
"AO0",
"ER2",
"UH1",
"IY1",
"AH2",
"DH",
"IY0",
"EY1",
"IH0",
"K",
"N",
"W",
"IY2",
"T",
"AA1",
"ER1",
"EH2",
"OY0",
"UH2",
"UW1",
"Z",
"AW2",
"AW1",
"V",
"UW2",
"AA2",
"ER",
"AW0",
"UW0",
"R",
"OW1",
"EH1",
"ZH",
"AE0",
"IH2",
"IH",
"Y",
"JH",
"P",
"AY1",
"EY0",
"OY2",
"TH",
"HH",
"D",
"ER0",
"CH",
"AO1",
"AE1",
"AO2",
"OY1",
"AY2",
"IH1",
"OW0",
"L",
"SH",
}
_g2p = G2p()
eng_dict = get_dict()
def g2p(text: str) -> tuple[list[str], list[int], list[int]]:
phones = []
tones = []
phone_len = []
words = __text_to_words(text)
for word in words:
temp_phones, temp_tones = [], []
if len(word) > 1 and "'" in word:
word = ["".join(word)]
for w in word:
if w in PUNCTUATIONS:
temp_phones.append(w)
temp_tones.append(0)
continue
if w.upper() in eng_dict:
phns, tns = __refine_syllables(eng_dict[w.upper()])
temp_phones += [__post_replace_ph(i) for i in phns]
temp_tones += tns
else:
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
phns, tns = [], []
for ph in phone_list:
if ph in ARPA:
ph, tn = __refine_ph(ph)
phns.append(ph)
tns.append(tn)
else:
phns.append(ph)
tns.append(0)
temp_phones += [__post_replace_ph(i) for i in phns]
temp_tones += tns
phones += temp_phones
tones += temp_tones
phone_len.append(len(temp_phones))
word2ph = []
for token, pl in zip(words, phone_len):
word_len = len(token)
word2ph += __distribute_phone(pl, word_len)
phones = ["_"] + phones + ["_"]
tones = [0] + tones + [0]
word2ph = [1] + word2ph + [1]
assert len(phones) == len(tones), text
assert len(phones) == sum(word2ph), text
return phones, tones, word2ph
def __post_replace_ph(ph: str) -> str:
REPLACE_MAP = {
":": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": ".",
"·": ",",
"、": ",",
"…": "...",
"···": "...",
"・・・": "...",
"v": "V",
}
if ph in REPLACE_MAP:
ph = REPLACE_MAP[ph]
if ph in SYMBOLS:
return ph
return "UNK"
def __refine_ph(phn: str) -> tuple[str, int]:
tone = 0
if re.search(r"\d$", phn):
tone = int(phn[-1]) + 1
phn = phn[:-1]
else:
tone = 3
return phn.lower(), tone
def __refine_syllables(syllables: list[list[str]]) -> tuple[list[str], list[int]]:
tones = []
phonemes = []
for phn_list in syllables:
for phn in phn_list:
phn, tone = __refine_ph(phn)
phonemes.append(phn)
tones.append(tone)
return phonemes, tones
def __distribute_phone(n_phone: int, n_word: int) -> list[int]:
phones_per_word = [0] * n_word
for task in range(n_phone):
min_tasks = min(phones_per_word)
min_index = phones_per_word.index(min_tasks)
phones_per_word[min_index] += 1
return phones_per_word
def __text_to_words(text: str) -> list[list[str]]:
tokenizer = bert_models.load_tokenizer(Languages.EN)
tokens = tokenizer.tokenize(text)
words = []
for idx, t in enumerate(tokens):
if t.startswith("▁"):
words.append([t[1:]])
elif t in PUNCTUATIONS:
if idx == len(tokens) - 1:
words.append([f"{t}"])
elif (
not tokens[idx + 1].startswith("▁")
and tokens[idx + 1] not in PUNCTUATIONS
):
if idx == 0:
words.append([])
words[-1].append(f"{t}")
else:
words.append([f"{t}"])
else:
if idx == 0:
words.append([])
words[-1].append(f"{t}")
return words
if __name__ == "__main__":
# print(get_dict())
# print(eng_word_to_phoneme("hello"))
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
# all_phones = set()
# eng_dict = get_dict()
# for k, syllables in eng_dict.items():
# for group in syllables:
# for ph in group:
# all_phones.add(ph)
# print(all_phones)