Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,19 +10,50 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
10 |
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
13 |
-
MODEL_ID = "nikravan/
|
14 |
-
|
15 |
CHAT_TEMPLATE = "ChatML"
|
16 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
17 |
CONTEXT_LENGTH = 16000
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
@spaces.GPU()
|
25 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
|
|
26 |
if CHAT_TEMPLATE == "Auto":
|
27 |
stop_tokens = [tokenizer.eos_token_id]
|
28 |
instruction = system_prompt + "\n\n"
|
@@ -43,6 +74,7 @@ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k,
|
|
43 |
instruction += f' {message} [/INST]'
|
44 |
else:
|
45 |
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'")
|
|
|
46 |
|
47 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
48 |
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
@@ -70,11 +102,10 @@ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k,
|
|
70 |
outputs.append(new_token)
|
71 |
if new_token in stop_tokens:
|
72 |
break
|
73 |
-
|
74 |
-
# تغییر قالب به Markdown و LaTeX
|
75 |
-
yield f"### $$ {result} $$"
|
76 |
|
77 |
|
|
|
78 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
79 |
quantization_config = BitsAndBytesConfig(
|
80 |
load_in_4bit=True,
|
@@ -88,19 +119,27 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
88 |
attn_implementation="flash_attention_2",
|
89 |
)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
|
|
|
10 |
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
13 |
+
MODEL_ID = "nikravan/Marco-O1-q4"
|
|
|
14 |
CHAT_TEMPLATE = "ChatML"
|
15 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
16 |
CONTEXT_LENGTH = 16000
|
17 |
|
18 |
+
# Estableciendo valores directamente para las variables
|
19 |
+
COLOR = "blue" # Color predeterminado de la interfaz
|
20 |
+
EMOJI = "🤖" # Emoji predeterminado para el modelo
|
21 |
+
DESCRIPTION = f"This is the {MODEL_NAME} model designed for testing thinking for general AI tasks." # Descripción predeterminada
|
22 |
+
|
23 |
+
latex_delimiters_set = [{
|
24 |
+
"left": "\\(",
|
25 |
+
"right": "\\)",
|
26 |
+
"display": False
|
27 |
+
}, {
|
28 |
+
"left": "\\begin{equation}",
|
29 |
+
"right": "\\end{equation}",
|
30 |
+
"display": True
|
31 |
+
}, {
|
32 |
+
"left": "\\begin{align}",
|
33 |
+
"right": "\\end{align}",
|
34 |
+
"display": True
|
35 |
+
}, {
|
36 |
+
"left": "\\begin{alignat}",
|
37 |
+
"right": "\\end{alignat}",
|
38 |
+
"display": True
|
39 |
+
}, {
|
40 |
+
"left": "\\begin{gather}",
|
41 |
+
"right": "\\end{gather}",
|
42 |
+
"display": True
|
43 |
+
}, {
|
44 |
+
"left": "\\begin{CD}",
|
45 |
+
"right": "\\end{CD}",
|
46 |
+
"display": True
|
47 |
+
}, {
|
48 |
+
"left": "\\[",
|
49 |
+
"right": "\\]",
|
50 |
+
"display": True
|
51 |
+
}]
|
52 |
|
53 |
|
54 |
@spaces.GPU()
|
55 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
56 |
+
# Format history with a given chat template
|
57 |
if CHAT_TEMPLATE == "Auto":
|
58 |
stop_tokens = [tokenizer.eos_token_id]
|
59 |
instruction = system_prompt + "\n\n"
|
|
|
74 |
instruction += f' {message} [/INST]'
|
75 |
else:
|
76 |
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'")
|
77 |
+
print(instruction)
|
78 |
|
79 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
80 |
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
|
|
102 |
outputs.append(new_token)
|
103 |
if new_token in stop_tokens:
|
104 |
break
|
105 |
+
yield "".join(outputs)
|
|
|
|
|
106 |
|
107 |
|
108 |
+
# Load model
|
109 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
110 |
quantization_config = BitsAndBytesConfig(
|
111 |
load_in_4bit=True,
|
|
|
119 |
attn_implementation="flash_attention_2",
|
120 |
)
|
121 |
|
122 |
+
# Create Gradio interface
|
123 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue=COLOR)) as demo:
|
124 |
+
chatbot = gr.Chatbot(label=EMOJI + " " + MODEL_NAME, latex=True)
|
125 |
+
system_prompt = gr.Textbox("You are a code assistant.", label="System prompt")
|
126 |
+
temperature = gr.Slider(0, 1, 0.3, label="Temperature")
|
127 |
+
max_new_tokens = gr.Slider(128, 4096, 1024, label="Max new tokens")
|
128 |
+
top_k = gr.Slider(1, 80, 40, label="Top K sampling")
|
129 |
+
repetition_penalty = gr.Slider(0, 2, 1.1, label="Repetition penalty")
|
130 |
+
top_p = gr.Slider(0, 1, 0.95, label="Top P sampling")
|
131 |
+
message = gr.Textbox(label="User Input")
|
132 |
+
submit = gr.Button("Submit")
|
133 |
+
|
134 |
+
def respond(message, chatbot_history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
135 |
+
response = predict(message, chatbot_history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p)
|
136 |
+
chatbot_history.append((message, "".join(response)))
|
137 |
+
return chatbot_history
|
138 |
+
|
139 |
+
submit.click(
|
140 |
+
respond,
|
141 |
+
inputs=[message, chatbot, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p],
|
142 |
+
outputs=chatbot
|
143 |
+
)
|
144 |
|
145 |
+
demo.launch()
|