Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import requests | |
| import os | |
| url = "http://59.110.170.104:8085/chat_completion" | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| do_sample: bool, | |
| seed: int, | |
| max_new_tokens, | |
| temperature, | |
| top_p, | |
| top_k, | |
| repetition_penalty | |
| ): | |
| messages = [] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| request_data = dict( | |
| messages=messages, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=do_sample, | |
| seed=seed, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty | |
| ) | |
| print(request_data) | |
| with requests.post(url, json=request_data, stream=True, headers={"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}) as r: | |
| # printing response of each stream | |
| for chunk in r.iter_content(1024): | |
| response += chunk.decode("utf8") | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| chatbot=gr.Chatbot(height=600), | |
| additional_inputs=[ | |
| # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Checkbox(True, label="do sample"), | |
| gr.Number(42, precision=0, label="seed"), | |
| gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.01, maximum=4.0, value=0.7, step=0.01, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=1.0, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| gr.Slider( | |
| minimum=0, | |
| maximum=100, | |
| value=0, | |
| step=1, | |
| label="Top-K (Top-K sampling)", | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=2, | |
| value=1.03, | |
| step=0.01, | |
| label="repetition penalty", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(default_concurrency_limit=2, max_size=10) | |
| demo.launch() |