Spaces:
Running
Running
Update app.py
Browse fileschanged to appkly the path analysis tool function
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import hf_hub_download
|
| 3 |
import pickle
|
| 4 |
from gradio import Progress
|
| 5 |
import numpy as np
|
|
@@ -12,9 +12,39 @@ import plotly.graph_objects as go
|
|
| 12 |
from sklearn.metrics import roc_auc_score
|
| 13 |
from matplotlib.figure import Figure
|
| 14 |
import csv
|
|
|
|
|
|
|
|
|
|
| 15 |
# import os
|
| 16 |
# Define the function to process the input file and model selection
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
| 19 |
# progress = gr.Progress(track_tqdm=True)
|
| 20 |
|
|
@@ -213,6 +243,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 213 |
row_num += 1
|
| 214 |
|
| 215 |
print(f"CSV file '{filename}' created successfully.")
|
|
|
|
|
|
|
| 216 |
|
| 217 |
task_type_map = {0: "ER", 1: "ME"}
|
| 218 |
label_map = {0: "unsuccessful", 1: "successful"}
|
|
@@ -1305,26 +1337,30 @@ with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
|
|
| 1305 |
|
| 1306 |
# with gr.Row():
|
| 1307 |
with gr.Column():
|
| 1308 |
-
with gr.Group(visible=
|
| 1309 |
-
|
| 1310 |
-
gr.Markdown(
|
| 1311 |
-
file_output_success = gr.File(label=" ")
|
| 1312 |
-
file_output_unsuccess = gr.File(label=" ")
|
| 1313 |
-
file_output_all = gr.File(label=" ")
|
| 1314 |
-
visualize_markdown = gr.Markdown(visible=False)
|
| 1315 |
|
| 1316 |
|
| 1317 |
def handle_generate(task_type_dropdown, use_predicted):
|
| 1318 |
label_source = "Predicted" if use_predicted else "Ground Truth"
|
| 1319 |
file_success_path, file_unsuccess_path,file_all_path, viz_link = provide_file_paths(task_type_dropdown, label_source)
|
|
|
|
|
|
|
|
|
|
| 1320 |
|
| 1321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1322 |
|
| 1323 |
|
| 1324 |
generate_button.click(
|
| 1325 |
fn=handle_generate,
|
| 1326 |
inputs=[task_type_radio, source_radio],
|
| 1327 |
-
outputs=[
|
| 1328 |
)
|
| 1329 |
|
| 1330 |
btn.click(
|
|
@@ -1338,7 +1374,7 @@ with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
|
|
| 1338 |
gr.update(visible=False) # Hide visualize markdown
|
| 1339 |
),
|
| 1340 |
inputs=[model_dropdown, increment_slider],
|
| 1341 |
-
outputs=[output_text, plot_output, opt1_pie, opt2_pie, task_type_radio,source_radio,
|
| 1342 |
)
|
| 1343 |
|
| 1344 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import hf_hub_download, HfApi
|
| 3 |
import pickle
|
| 4 |
from gradio import Progress
|
| 5 |
import numpy as np
|
|
|
|
| 12 |
from sklearn.metrics import roc_auc_score
|
| 13 |
from matplotlib.figure import Figure
|
| 14 |
import csv
|
| 15 |
+
import os
|
| 16 |
+
from huggingface_hub import login
|
| 17 |
+
|
| 18 |
# import os
|
| 19 |
# Define the function to process the input file and model selection
|
| 20 |
|
| 21 |
+
api = HfApi()
|
| 22 |
+
DATASET_REPO = "suryadev1/generated-csvs"
|
| 23 |
+
def delete_files():
|
| 24 |
+
repo_files = api.list_repo_files(repo_id=DATASET_REPO, repo_type="dataset")
|
| 25 |
+
|
| 26 |
+
# Step 2: delete all CSV files
|
| 27 |
+
for f in repo_files:
|
| 28 |
+
if f.endswith(".csv"):
|
| 29 |
+
try:
|
| 30 |
+
api.delete_file(
|
| 31 |
+
path_in_repo=f,
|
| 32 |
+
repo_id=DATASET_REPO,
|
| 33 |
+
repo_type="dataset"
|
| 34 |
+
)
|
| 35 |
+
print(f"Deleted old file: {f}")
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"Could not delete {f}: {e}")
|
| 38 |
+
def upload_to_dataset(filepath):
|
| 39 |
+
|
| 40 |
+
api.upload_file(
|
| 41 |
+
path_or_fileobj=filepath,
|
| 42 |
+
path_in_repo=os.path.basename(filepath),
|
| 43 |
+
repo_id=DATASET_REPO,
|
| 44 |
+
repo_type="dataset"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
| 49 |
# progress = gr.Progress(track_tqdm=True)
|
| 50 |
|
|
|
|
| 243 |
row_num += 1
|
| 244 |
|
| 245 |
print(f"CSV file '{filename}' created successfully.")
|
| 246 |
+
full_path = os.path.join("fileHandler", filename)
|
| 247 |
+
# upload_to_dataset(full_path)
|
| 248 |
|
| 249 |
task_type_map = {0: "ER", 1: "ME"}
|
| 250 |
label_map = {0: "unsuccessful", 1: "successful"}
|
|
|
|
| 1337 |
|
| 1338 |
# with gr.Row():
|
| 1339 |
with gr.Column():
|
| 1340 |
+
with gr.Group(visible=True) as file_output_group:
|
| 1341 |
+
|
| 1342 |
+
visualize_markdown = gr.Markdown(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1343 |
|
| 1344 |
|
| 1345 |
def handle_generate(task_type_dropdown, use_predicted):
|
| 1346 |
label_source = "Predicted" if use_predicted else "Ground Truth"
|
| 1347 |
file_success_path, file_unsuccess_path,file_all_path, viz_link = provide_file_paths(task_type_dropdown, label_source)
|
| 1348 |
+
delete_files()
|
| 1349 |
+
print("writing file to the dataset",file_success_path)
|
| 1350 |
+
# full_path = os.path.join("fileHandler", filename)
|
| 1351 |
|
| 1352 |
+
upload_to_dataset(file_success_path)
|
| 1353 |
+
print("writing file to the dataset",file_unsuccess_path)
|
| 1354 |
+
upload_to_dataset(file_unsuccess_path)
|
| 1355 |
+
print("writing file to the dataset",file_all_path)
|
| 1356 |
+
upload_to_dataset(file_all_path)
|
| 1357 |
+
return viz_link,gr.update(visible=True)
|
| 1358 |
|
| 1359 |
|
| 1360 |
generate_button.click(
|
| 1361 |
fn=handle_generate,
|
| 1362 |
inputs=[task_type_radio, source_radio],
|
| 1363 |
+
outputs=[ visualize_markdown,file_output_group]
|
| 1364 |
)
|
| 1365 |
|
| 1366 |
btn.click(
|
|
|
|
| 1374 |
gr.update(visible=False) # Hide visualize markdown
|
| 1375 |
),
|
| 1376 |
inputs=[model_dropdown, increment_slider],
|
| 1377 |
+
outputs=[output_text, plot_output, opt1_pie, opt2_pie, task_type_radio,source_radio, visualize_markdown]
|
| 1378 |
)
|
| 1379 |
|
| 1380 |
|