Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
import tempfile | |
import unittest | |
import unittest.mock as mock | |
from pathlib import Path | |
from huggingface_hub import HfFolder, delete_repo | |
from huggingface_hub.file_download import http_get | |
from requests.exceptions import HTTPError | |
from transformers import ( | |
AlbertTokenizer, | |
AutoTokenizer, | |
BertTokenizer, | |
BertTokenizerFast, | |
GPT2TokenizerFast, | |
is_tokenizers_available, | |
) | |
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers | |
from transformers.tokenization_utils import Trie | |
sys.path.append(str(Path(__file__).parent.parent / "utils")) | |
from test_module.custom_tokenization import CustomTokenizer # noqa E402 | |
if is_tokenizers_available(): | |
from test_module.custom_tokenization_fast import CustomTokenizerFast | |
class TokenizerUtilTester(unittest.TestCase): | |
def test_cached_files_are_used_when_internet_is_down(self): | |
# A mock response for an HTTP head request to emulate server down | |
response_mock = mock.Mock() | |
response_mock.status_code = 500 | |
response_mock.headers = {} | |
response_mock.raise_for_status.side_effect = HTTPError | |
response_mock.json.return_value = {} | |
# Download this model to make sure it's in the cache. | |
_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") | |
# Under the mock environment we get a 500 error when trying to reach the tokenizer. | |
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: | |
_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") | |
# This check we did call the fake head request | |
mock_head.assert_called() | |
def test_cached_files_are_used_when_internet_is_down_missing_files(self): | |
# A mock response for an HTTP head request to emulate server down | |
response_mock = mock.Mock() | |
response_mock.status_code = 500 | |
response_mock.headers = {} | |
response_mock.raise_for_status.side_effect = HTTPError | |
response_mock.json.return_value = {} | |
# Download this model to make sure it's in the cache. | |
_ = GPT2TokenizerFast.from_pretrained("openai-community/gpt2") | |
# Under the mock environment we get a 500 error when trying to reach the tokenizer. | |
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: | |
_ = GPT2TokenizerFast.from_pretrained("openai-community/gpt2") | |
# This check we did call the fake head request | |
mock_head.assert_called() | |
def test_legacy_load_from_one_file(self): | |
# This test is for deprecated behavior and can be removed in v5 | |
try: | |
tmp_file = tempfile.mktemp() | |
with open(tmp_file, "wb") as f: | |
http_get("https://huggingface.co/albert/albert-base-v1/resolve/main/spiece.model", f) | |
_ = AlbertTokenizer.from_pretrained(tmp_file) | |
finally: | |
os.remove(tmp_file) | |
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in | |
# the current folder and have the right name. | |
if os.path.isfile("tokenizer.json"): | |
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. | |
return | |
try: | |
with open("tokenizer.json", "wb") as f: | |
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json", f) | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
# The tiny random BERT has a vocab size of 1024, tiny openai-community/gpt2 as a vocab size of 1000 | |
self.assertEqual(tokenizer.vocab_size, 1000) | |
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. | |
finally: | |
os.remove("tokenizer.json") | |
class TokenizerPushToHubTester(unittest.TestCase): | |
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] | |
def setUpClass(cls): | |
cls._token = TOKEN | |
HfFolder.save_token(TOKEN) | |
def tearDownClass(cls): | |
try: | |
delete_repo(token=cls._token, repo_id="test-tokenizer") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="valid_org/test-tokenizer-org") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="test-dynamic-tokenizer") | |
except HTTPError: | |
pass | |
def test_push_to_hub(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
vocab_file = os.path.join(tmp_dir, "vocab.txt") | |
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: | |
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) | |
tokenizer = BertTokenizer(vocab_file) | |
tokenizer.push_to_hub("test-tokenizer", token=self._token) | |
new_tokenizer = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer") | |
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="test-tokenizer") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained(tmp_dir, repo_id="test-tokenizer", push_to_hub=True, token=self._token) | |
new_tokenizer = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer") | |
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) | |
def test_push_to_hub_in_organization(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
vocab_file = os.path.join(tmp_dir, "vocab.txt") | |
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: | |
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) | |
tokenizer = BertTokenizer(vocab_file) | |
tokenizer.push_to_hub("valid_org/test-tokenizer-org", token=self._token) | |
new_tokenizer = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org") | |
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="valid_org/test-tokenizer-org") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained( | |
tmp_dir, repo_id="valid_org/test-tokenizer-org", push_to_hub=True, token=self._token | |
) | |
new_tokenizer = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org") | |
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) | |
def test_push_to_hub_dynamic_tokenizer(self): | |
CustomTokenizer.register_for_auto_class() | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
vocab_file = os.path.join(tmp_dir, "vocab.txt") | |
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: | |
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) | |
tokenizer = CustomTokenizer(vocab_file) | |
# No fast custom tokenizer | |
tokenizer.push_to_hub("test-dynamic-tokenizer", token=self._token) | |
tokenizer = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=True) | |
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module | |
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer") | |
# Fast and slow custom tokenizer | |
CustomTokenizerFast.register_for_auto_class() | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
vocab_file = os.path.join(tmp_dir, "vocab.txt") | |
with open(vocab_file, "w", encoding="utf-8") as vocab_writer: | |
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) | |
bert_tokenizer = BertTokenizerFast.from_pretrained(tmp_dir) | |
bert_tokenizer.save_pretrained(tmp_dir) | |
tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir) | |
tokenizer.push_to_hub("test-dynamic-tokenizer", token=self._token) | |
tokenizer = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=True) | |
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module | |
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast") | |
tokenizer = AutoTokenizer.from_pretrained( | |
f"{USER}/test-dynamic-tokenizer", use_fast=False, trust_remote_code=True | |
) | |
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module | |
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer") | |
class TrieTest(unittest.TestCase): | |
def test_trie(self): | |
trie = Trie() | |
trie.add("Hello 友達") | |
self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}}) | |
trie.add("Hello") | |
trie.data | |
self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}}) | |
def test_trie_split(self): | |
trie = Trie() | |
self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS] This is a extra_id_100"]) | |
trie.add("[CLS]") | |
trie.add("extra_id_1") | |
trie.add("extra_id_100") | |
self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS]", " This is a ", "extra_id_100"]) | |
def test_trie_single(self): | |
trie = Trie() | |
trie.add("A") | |
self.assertEqual(trie.split("ABC"), ["A", "BC"]) | |
self.assertEqual(trie.split("BCA"), ["BC", "A"]) | |
def test_trie_final(self): | |
trie = Trie() | |
trie.add("TOKEN]") | |
trie.add("[SPECIAL_TOKEN]") | |
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]"), ["This is something ", "[SPECIAL_TOKEN]"]) | |
def test_trie_subtokens(self): | |
trie = Trie() | |
trie.add("A") | |
trie.add("P") | |
trie.add("[SPECIAL_TOKEN]") | |
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]"), ["This is something ", "[SPECIAL_TOKEN]"]) | |
def test_trie_suffix_tokens(self): | |
trie = Trie() | |
trie.add("AB") | |
trie.add("B") | |
trie.add("C") | |
self.assertEqual(trie.split("ABC"), ["AB", "C"]) | |
def test_trie_skip(self): | |
trie = Trie() | |
trie.add("ABC") | |
trie.add("B") | |
trie.add("CD") | |
self.assertEqual(trie.split("ABCD"), ["ABC", "D"]) | |
def test_cut_text_hardening(self): | |
# Even if the offsets are wrong, we necessarily output correct string | |
# parts. | |
trie = Trie() | |
parts = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3]) | |
self.assertEqual(parts, ["AB", "C"]) | |