Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import numpy as np | |
from huggingface_hub import HfFolder, delete_repo, snapshot_download | |
from requests.exceptions import HTTPError | |
from transformers import BertConfig, BertModel, is_flax_available, is_torch_available | |
from transformers.testing_utils import ( | |
TOKEN, | |
USER, | |
CaptureLogger, | |
is_pt_flax_cross_test, | |
is_staging_test, | |
require_flax, | |
require_safetensors, | |
require_torch, | |
) | |
from transformers.utils import FLAX_WEIGHTS_NAME, SAFE_WEIGHTS_NAME, logging | |
if is_flax_available(): | |
import os | |
from flax.core.frozen_dict import unfreeze | |
from flax.traverse_util import flatten_dict | |
from transformers import FlaxBertModel | |
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8 | |
if is_torch_available(): | |
import torch | |
class FlaxModelPushToHubTester(unittest.TestCase): | |
def setUpClass(cls): | |
cls._token = TOKEN | |
HfFolder.save_token(TOKEN) | |
def tearDownClass(cls): | |
try: | |
delete_repo(token=cls._token, repo_id="test-model-flax") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org") | |
except HTTPError: | |
pass | |
def test_push_to_hub(self): | |
config = BertConfig( | |
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 | |
) | |
model = FlaxBertModel(config) | |
model.push_to_hub("test-model-flax", token=self._token) | |
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax") | |
base_params = flatten_dict(unfreeze(model.params)) | |
new_params = flatten_dict(unfreeze(new_model.params)) | |
for key in base_params.keys(): | |
max_diff = (base_params[key] - new_params[key]).sum().item() | |
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") | |
# Reset repo | |
delete_repo(token=self._token, repo_id="test-model-flax") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, token=self._token) | |
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax") | |
base_params = flatten_dict(unfreeze(model.params)) | |
new_params = flatten_dict(unfreeze(new_model.params)) | |
for key in base_params.keys(): | |
max_diff = (base_params[key] - new_params[key]).sum().item() | |
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") | |
def test_push_to_hub_in_organization(self): | |
config = BertConfig( | |
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 | |
) | |
model = FlaxBertModel(config) | |
model.push_to_hub("valid_org/test-model-flax-org", token=self._token) | |
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") | |
base_params = flatten_dict(unfreeze(model.params)) | |
new_params = flatten_dict(unfreeze(new_model.params)) | |
for key in base_params.keys(): | |
max_diff = (base_params[key] - new_params[key]).sum().item() | |
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") | |
# Reset repo | |
delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained( | |
tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, token=self._token | |
) | |
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") | |
base_params = flatten_dict(unfreeze(model.params)) | |
new_params = flatten_dict(unfreeze(new_model.params)) | |
for key in base_params.keys(): | |
max_diff = (base_params[key] - new_params[key]).sum().item() | |
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") | |
def check_models_equal(model1, model2): | |
models_are_equal = True | |
flat_params_1 = flatten_dict(model1.params) | |
flat_params_2 = flatten_dict(model2.params) | |
for key in flat_params_1.keys(): | |
if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4: | |
models_are_equal = False | |
return models_are_equal | |
class FlaxModelUtilsTest(unittest.TestCase): | |
def test_model_from_pretrained_subfolder(self): | |
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") | |
model = FlaxBertModel(config) | |
subfolder = "bert" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(os.path.join(tmp_dir, subfolder)) | |
with self.assertRaises(OSError): | |
_ = FlaxBertModel.from_pretrained(tmp_dir) | |
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder) | |
self.assertTrue(check_models_equal(model, model_loaded)) | |
def test_model_from_pretrained_subfolder_sharded(self): | |
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") | |
model = FlaxBertModel(config) | |
subfolder = "bert" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB") | |
with self.assertRaises(OSError): | |
_ = FlaxBertModel.from_pretrained(tmp_dir) | |
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder) | |
self.assertTrue(check_models_equal(model, model_loaded)) | |
def test_model_from_pretrained_hub_subfolder(self): | |
subfolder = "bert" | |
model_id = "hf-internal-testing/tiny-random-bert-subfolder" | |
with self.assertRaises(OSError): | |
_ = FlaxBertModel.from_pretrained(model_id) | |
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder) | |
self.assertIsNotNone(model) | |
def test_model_from_pretrained_hub_subfolder_sharded(self): | |
subfolder = "bert" | |
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder" | |
with self.assertRaises(OSError): | |
_ = FlaxBertModel.from_pretrained(model_id) | |
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder) | |
self.assertIsNotNone(model) | |
def test_safetensors_save_and_load(self): | |
model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, safe_serialization=True) | |
# No msgpack file, only a model.safetensors | |
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) | |
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, FLAX_WEIGHTS_NAME))) | |
new_model = FlaxBertModel.from_pretrained(tmp_dir) | |
self.assertTrue(check_models_equal(model, new_model)) | |
def test_safetensors_save_and_load_pt_to_flax(self): | |
model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True) | |
pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
pt_model.save_pretrained(tmp_dir) | |
# Check we have a model.safetensors file | |
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) | |
new_model = FlaxBertModel.from_pretrained(tmp_dir) | |
# Check models are equal | |
self.assertTrue(check_models_equal(model, new_model)) | |
def test_safetensors_load_from_hub(self): | |
""" | |
This test checks that we can load safetensors from a checkpoint that only has those on the Hub | |
""" | |
flax_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") | |
# Can load from the Flax-formatted checkpoint | |
safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-only") | |
self.assertTrue(check_models_equal(flax_model, safetensors_model)) | |
def test_safetensors_load_from_local(self): | |
""" | |
This test checks that we can load safetensors from a checkpoint that only has those on the Hub | |
""" | |
with tempfile.TemporaryDirectory() as tmp: | |
location = snapshot_download("hf-internal-testing/tiny-bert-flax-only", cache_dir=tmp) | |
flax_model = FlaxBertModel.from_pretrained(location) | |
with tempfile.TemporaryDirectory() as tmp: | |
location = snapshot_download("hf-internal-testing/tiny-bert-flax-safetensors-only", cache_dir=tmp) | |
safetensors_model = FlaxBertModel.from_pretrained(location) | |
self.assertTrue(check_models_equal(flax_model, safetensors_model)) | |
def test_safetensors_load_from_hub_from_safetensors_pt(self): | |
""" | |
This test checks that we can load safetensors from a checkpoint that only has those on the Hub. | |
saved in the "pt" format. | |
""" | |
flax_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-msgpack") | |
# Can load from the PyTorch-formatted checkpoint | |
safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") | |
self.assertTrue(check_models_equal(flax_model, safetensors_model)) | |
def test_safetensors_load_from_hub_from_safetensors_pt_bf16(self): | |
""" | |
This test checks that we can load safetensors from a checkpoint that only has those on the Hub. | |
saved in the "pt" format. | |
""" | |
import torch | |
model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") | |
model.to(torch.bfloat16) | |
with tempfile.TemporaryDirectory() as tmp: | |
model.save_pretrained(tmp) | |
flax_model = FlaxBertModel.from_pretrained(tmp) | |
# Can load from the PyTorch-formatted checkpoint | |
safetensors_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") | |
self.assertTrue(check_models_equal(flax_model, safetensors_model)) | |
def test_safetensors_load_from_local_from_safetensors_pt(self): | |
""" | |
This test checks that we can load safetensors from a checkpoint that only has those on the Hub. | |
saved in the "pt" format. | |
""" | |
with tempfile.TemporaryDirectory() as tmp: | |
location = snapshot_download("hf-internal-testing/tiny-bert-msgpack", cache_dir=tmp) | |
flax_model = FlaxBertModel.from_pretrained(location) | |
# Can load from the PyTorch-formatted checkpoint | |
with tempfile.TemporaryDirectory() as tmp: | |
location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors", cache_dir=tmp) | |
safetensors_model = FlaxBertModel.from_pretrained(location) | |
self.assertTrue(check_models_equal(flax_model, safetensors_model)) | |
def test_safetensors_load_from_hub_msgpack_before_safetensors(self): | |
""" | |
This test checks that we'll first download msgpack weights before safetensors | |
The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch | |
""" | |
FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-msgpack") | |
def test_safetensors_load_from_local_msgpack_before_safetensors(self): | |
""" | |
This test checks that we'll first download msgpack weights before safetensors | |
The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch | |
""" | |
with tempfile.TemporaryDirectory() as tmp: | |
location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors-msgpack", cache_dir=tmp) | |
FlaxBertModel.from_pretrained(location) | |
def test_safetensors_flax_from_flax(self): | |
model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, safe_serialization=True) | |
new_model = FlaxBertModel.from_pretrained(tmp_dir) | |
self.assertTrue(check_models_equal(model, new_model)) | |
def test_safetensors_flax_from_torch(self): | |
hub_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") | |
model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, safe_serialization=True) | |
new_model = FlaxBertModel.from_pretrained(tmp_dir) | |
self.assertTrue(check_models_equal(hub_model, new_model)) | |
def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_local(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
path = snapshot_download( | |
"hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded", cache_dir=tmp_dir | |
) | |
# This should not raise even if there are two types of sharded weights | |
FlaxBertModel.from_pretrained(path) | |
def test_safetensors_flax_from_sharded_msgpack_with_sharded_safetensors_hub(self): | |
# This should not raise even if there are two types of sharded weights | |
# This should discard the safetensors weights in favor of the msgpack sharded weights | |
FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-safetensors-msgpack-sharded") | |
def test_safetensors_from_pt_bf16(self): | |
# This should not raise; should be able to load bf16-serialized torch safetensors without issue | |
# and without torch. | |
logger = logging.get_logger("transformers.modeling_flax_utils") | |
with CaptureLogger(logger) as cl: | |
FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") | |
self.assertTrue( | |
"Some of the weights of FlaxBertModel were initialized in bfloat16 precision from the model checkpoint" | |
in cl.out | |
) | |
def test_from_pt_bf16(self): | |
model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") | |
model.to(torch.bfloat16) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model.save_pretrained(tmp_dir, safe_serialization=False) | |
logger = logging.get_logger("transformers.modeling_flax_utils") | |
with CaptureLogger(logger) as cl: | |
new_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-bf16") | |
self.assertTrue( | |
"Some of the weights of FlaxBertModel were initialized in bfloat16 precision from the model checkpoint" | |
in cl.out | |
) | |
flat_params_1 = flatten_dict(new_model.params) | |
for value in flat_params_1.values(): | |
self.assertEqual(value.dtype, "bfloat16") | |