Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from argparse import ArgumentParser, Namespace | |
from ..utils import logging | |
from . import BaseTransformersCLICommand | |
def convert_command_factory(args: Namespace): | |
""" | |
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. | |
Returns: ServeCommand | |
""" | |
return ConvertCommand( | |
args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name | |
) | |
IMPORT_ERROR_MESSAGE = """ | |
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires | |
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. | |
""" | |
class ConvertCommand(BaseTransformersCLICommand): | |
def register_subcommand(parser: ArgumentParser): | |
""" | |
Register this command to argparse so it's available for the transformer-cli | |
Args: | |
parser: Root parser to register command-specific arguments | |
""" | |
train_parser = parser.add_parser( | |
"convert", | |
help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", | |
) | |
train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.") | |
train_parser.add_argument( | |
"--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder." | |
) | |
train_parser.add_argument( | |
"--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output." | |
) | |
train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.") | |
train_parser.add_argument( | |
"--finetuning_task_name", | |
type=str, | |
default=None, | |
help="Optional fine-tuning task name if the TF model was a finetuned model.", | |
) | |
train_parser.set_defaults(func=convert_command_factory) | |
def __init__( | |
self, | |
model_type: str, | |
tf_checkpoint: str, | |
pytorch_dump_output: str, | |
config: str, | |
finetuning_task_name: str, | |
*args, | |
): | |
self._logger = logging.get_logger("transformers-cli/converting") | |
self._logger.info(f"Loading model {model_type}") | |
self._model_type = model_type | |
self._tf_checkpoint = tf_checkpoint | |
self._pytorch_dump_output = pytorch_dump_output | |
self._config = config | |
self._finetuning_task_name = finetuning_task_name | |
def run(self): | |
if self._model_type == "albert": | |
try: | |
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( | |
convert_tf_checkpoint_to_pytorch, | |
) | |
except ImportError: | |
raise ImportError(IMPORT_ERROR_MESSAGE) | |
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
elif self._model_type == "bert": | |
try: | |
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( | |
convert_tf_checkpoint_to_pytorch, | |
) | |
except ImportError: | |
raise ImportError(IMPORT_ERROR_MESSAGE) | |
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
elif self._model_type == "funnel": | |
try: | |
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( | |
convert_tf_checkpoint_to_pytorch, | |
) | |
except ImportError: | |
raise ImportError(IMPORT_ERROR_MESSAGE) | |
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
elif self._model_type == "t5": | |
try: | |
from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch | |
except ImportError: | |
raise ImportError(IMPORT_ERROR_MESSAGE) | |
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
elif self._model_type == "gpt": | |
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( | |
convert_openai_checkpoint_to_pytorch, | |
) | |
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
elif self._model_type == "gpt2": | |
try: | |
from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import ( | |
convert_gpt2_checkpoint_to_pytorch, | |
) | |
except ImportError: | |
raise ImportError(IMPORT_ERROR_MESSAGE) | |
convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
elif self._model_type == "xlnet": | |
try: | |
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( | |
convert_xlnet_checkpoint_to_pytorch, | |
) | |
except ImportError: | |
raise ImportError(IMPORT_ERROR_MESSAGE) | |
convert_xlnet_checkpoint_to_pytorch( | |
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name | |
) | |
elif self._model_type == "xlm": | |
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( | |
convert_xlm_checkpoint_to_pytorch, | |
) | |
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) | |
elif self._model_type == "lxmert": | |
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( | |
convert_lxmert_checkpoint_to_pytorch, | |
) | |
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) | |
elif self._model_type == "rembert": | |
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( | |
convert_rembert_tf_checkpoint_to_pytorch, | |
) | |
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) | |
else: | |
raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]") | |