Spaces:
Runtime error
Runtime error
from collections import Counter | |
import datasets | |
import transformers | |
from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS | |
from transformers.utils import logging | |
logging.set_verbosity_info() | |
TOKENIZER_CLASSES = { | |
name: (getattr(transformers, name), getattr(transformers, name + "Fast")) for name in SLOW_TO_FAST_CONVERTERS | |
} | |
dataset = datasets.load_dataset("xnli", split="test+validation") | |
total = 0 | |
perfect = 0 | |
imperfect = 0 | |
wrong = 0 | |
def check_diff(spm_diff, tok_diff, slow, fast): | |
if spm_diff == list(reversed(tok_diff)): | |
# AAA -> AA+A vs A+AA case. | |
return True | |
elif len(spm_diff) == len(tok_diff) and fast.decode(spm_diff) == fast.decode(tok_diff): | |
# Second order OK | |
# Barrich -> Barr + ich vs Bar + rich | |
return True | |
spm_reencoded = slow.encode(slow.decode(spm_diff)) | |
tok_reencoded = fast.encode(fast.decode(spm_diff)) | |
if spm_reencoded != spm_diff and spm_reencoded == tok_reencoded: | |
# Type 3 error. | |
# Snehagatha -> | |
# Sne, h, aga, th, a | |
# Sne, ha, gat, ha | |
# Encoding the wrong with sp does not even recover what spm gave us | |
# It fits tokenizer however... | |
return True | |
return False | |
def check_LTR_mark(line, idx, fast): | |
enc = fast.encode_plus(line)[0] | |
offsets = enc.offsets | |
curr, prev = offsets[idx], offsets[idx - 1] | |
if curr is not None and line[curr[0] : curr[1]] == "\u200f": | |
return True | |
if prev is not None and line[prev[0] : prev[1]] == "\u200f": | |
return True | |
def check_details(line, spm_ids, tok_ids, slow, fast): | |
# Encoding can be the same with same result AAA -> A + AA vs AA + A | |
# We can check that we use at least exactly the same number of tokens. | |
for i, (spm_id, tok_id) in enumerate(zip(spm_ids, tok_ids)): | |
if spm_id != tok_id: | |
break | |
first = i | |
for i, (spm_id, tok_id) in enumerate(zip(reversed(spm_ids), reversed(tok_ids))): | |
if spm_id != tok_id: | |
break | |
last = len(spm_ids) - i | |
spm_diff = spm_ids[first:last] | |
tok_diff = tok_ids[first:last] | |
if check_diff(spm_diff, tok_diff, slow, fast): | |
return True | |
if check_LTR_mark(line, first, fast): | |
return True | |
if last - first > 5: | |
# We might have twice a single problem, attempt to subdivide the disjointed tokens into smaller problems | |
spms = Counter(spm_ids[first:last]) | |
toks = Counter(tok_ids[first:last]) | |
removable_tokens = {spm_ for (spm_, si) in spms.items() if toks.get(spm_, 0) == si} | |
min_width = 3 | |
for i in range(last - first - min_width): | |
if all(spm_ids[first + i + j] in removable_tokens for j in range(min_width)): | |
possible_matches = [ | |
k | |
for k in range(last - first - min_width) | |
if tok_ids[first + k : first + k + min_width] == spm_ids[first + i : first + i + min_width] | |
] | |
for j in possible_matches: | |
if check_diff(spm_ids[first : first + i], tok_ids[first : first + j], sp, tok) and check_details( | |
line, | |
spm_ids[first + i : last], | |
tok_ids[first + j : last], | |
slow, | |
fast, | |
): | |
return True | |
print(f"Spm: {[fast.decode([spm_ids[i]]) for i in range(first, last)]}") | |
try: | |
print(f"Tok: {[fast.decode([tok_ids[i]]) for i in range(first, last)]}") | |
except Exception: | |
pass | |
fast.decode(spm_ids[:first]) | |
fast.decode(spm_ids[last:]) | |
wrong = fast.decode(spm_ids[first:last]) | |
print() | |
print(wrong) | |
return False | |
def test_string(slow, fast, text): | |
global perfect | |
global imperfect | |
global wrong | |
global total | |
slow_ids = slow.encode(text) | |
fast_ids = fast.encode(text) | |
skip_assert = False | |
total += 1 | |
if slow_ids != fast_ids: | |
if check_details(text, slow_ids, fast_ids, slow, fast): | |
skip_assert = True | |
imperfect += 1 | |
else: | |
wrong += 1 | |
else: | |
perfect += 1 | |
if total % 10000 == 0: | |
print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})") | |
if skip_assert: | |
return | |
assert ( | |
slow_ids == fast_ids | |
), f"line {text} : \n\n{slow_ids}\n{fast_ids}\n\n{slow.tokenize(text)}\n{fast.tokenize(text)}" | |
def test_tokenizer(slow, fast): | |
global batch_total | |
for i in range(len(dataset)): | |
# premise, all languages | |
for text in dataset[i]["premise"].values(): | |
test_string(slow, fast, text) | |
# hypothesis, all languages | |
for text in dataset[i]["hypothesis"]["translation"]: | |
test_string(slow, fast, text) | |
if __name__ == "__main__": | |
for name, (slow_class, fast_class) in TOKENIZER_CLASSES.items(): | |
checkpoint_names = list(slow_class.max_model_input_sizes.keys()) | |
for checkpoint in checkpoint_names: | |
imperfect = 0 | |
perfect = 0 | |
wrong = 0 | |
total = 0 | |
print(f"========================== Checking {name}: {checkpoint} ==========================") | |
slow = slow_class.from_pretrained(checkpoint, force_download=True) | |
fast = fast_class.from_pretrained(checkpoint, force_download=True) | |
test_tokenizer(slow, fast) | |
print(f"Accuracy {perfect * 100 / total:.2f}") | |