Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Utility that checks the big table in the file docs/source/en/index.md and potentially updates it. | |
Use from the root of the repo with: | |
```bash | |
python utils/check_inits.py | |
``` | |
for a check that will error in case of inconsistencies (used by `make repo-consistency`). | |
To auto-fix issues run: | |
```bash | |
python utils/check_inits.py --fix_and_overwrite | |
``` | |
which is used by `make fix-copies`. | |
""" | |
import argparse | |
import collections | |
import os | |
import re | |
from typing import List | |
from transformers.utils import direct_transformers_import | |
# All paths are set with the intent you should run this script from the root of the repo with the command | |
# python utils/check_table.py | |
TRANSFORMERS_PATH = "src/transformers" | |
PATH_TO_DOCS = "docs/source/en" | |
REPO_PATH = "." | |
def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str: | |
""" | |
Find the text in filename between two prompts. | |
Args: | |
filename (`str`): The file to search into. | |
start_prompt (`str`): A string to look for at the start of the content searched. | |
end_prompt (`str`): A string that will mark the end of the content to look for. | |
Returns: | |
`str`: The content between the prompts. | |
""" | |
with open(filename, "r", encoding="utf-8", newline="\n") as f: | |
lines = f.readlines() | |
# Find the start prompt. | |
start_index = 0 | |
while not lines[start_index].startswith(start_prompt): | |
start_index += 1 | |
start_index += 1 | |
# Now go until the end prompt. | |
end_index = start_index | |
while not lines[end_index].startswith(end_prompt): | |
end_index += 1 | |
end_index -= 1 | |
while len(lines[start_index]) <= 1: | |
start_index += 1 | |
while len(lines[end_index]) <= 1: | |
end_index -= 1 | |
end_index += 1 | |
return "".join(lines[start_index:end_index]), start_index, end_index, lines | |
# Regexes that match TF/Flax/PT model names. Add here suffixes that are used to identify models, separated by | | |
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | |
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | |
# Will match any TF or Flax model too so need to be in an else branch after the two previous regexes. | |
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | |
# This is to make sure the transformers module imported is the one in the repo. | |
transformers_module = direct_transformers_import(TRANSFORMERS_PATH) | |
def camel_case_split(identifier: str) -> List[str]: | |
""" | |
Split a camel-cased name into words. | |
Args: | |
identifier (`str`): The camel-cased name to parse. | |
Returns: | |
`List[str]`: The list of words in the identifier (as seprated by capital letters). | |
Example: | |
```py | |
>>> camel_case_split("CamelCasedClass") | |
["Camel", "Cased", "Class"] | |
``` | |
""" | |
# Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python | |
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier) | |
return [m.group(0) for m in matches] | |
def _center_text(text: str, width: int) -> str: | |
""" | |
Utility that will add spaces on the left and right of a text to make it centered for a given width. | |
Args: | |
text (`str`): The text to center. | |
width (`int`): The desired length of the result. | |
Returns: | |
`str`: A text of length `width` with the original `text` in the middle. | |
""" | |
text_length = 2 if text == "✅" or text == "❌" else len(text) | |
left_indent = (width - text_length) // 2 | |
right_indent = width - text_length - left_indent | |
return " " * left_indent + text + " " * right_indent | |
SPECIAL_MODEL_NAME_LINK_MAPPING = { | |
"Data2VecAudio": "[Data2VecAudio](model_doc/data2vec)", | |
"Data2VecText": "[Data2VecText](model_doc/data2vec)", | |
"Data2VecVision": "[Data2VecVision](model_doc/data2vec)", | |
"DonutSwin": "[DonutSwin](model_doc/donut)", | |
} | |
MODEL_NAMES_WITH_SAME_CONFIG = { | |
"BARThez": "BART", | |
"BARTpho": "BART", | |
"BertJapanese": "BERT", | |
"BERTweet": "BERT", | |
"BORT": "BERT", | |
"ByT5": "T5", | |
"CPM": "OpenAI GPT-2", | |
"DePlot": "Pix2Struct", | |
"DialoGPT": "OpenAI GPT-2", | |
"DiT": "BEiT", | |
"FLAN-T5": "T5", | |
"FLAN-UL2": "T5", | |
"HerBERT": "BERT", | |
"LayoutXLM": "LayoutLMv2", | |
"Llama2": "LLaMA", | |
"Llama3": "LLaMA", | |
"MADLAD-400": "T5", | |
"MatCha": "Pix2Struct", | |
"mBART-50": "mBART", | |
"Megatron-GPT2": "OpenAI GPT-2", | |
"mLUKE": "LUKE", | |
"MMS": "Wav2Vec2", | |
"NLLB": "M2M100", | |
"PhoBERT": "BERT", | |
"T5v1.1": "T5", | |
"TAPEX": "BART", | |
"UL2": "T5", | |
"Wav2Vec2Phoneme": "Wav2Vec2", | |
"XLM-V": "XLM-RoBERTa", | |
"XLS-R": "Wav2Vec2", | |
"XLSR-Wav2Vec2": "Wav2Vec2", | |
} | |
MODEL_NAMES_TO_IGNORE = ["CLIPVisionModel", "SiglipVisionModel", "ChineseCLIPVisionModel"] | |
def get_model_table_from_auto_modules() -> str: | |
""" | |
Generates an up-to-date model table from the content of the auto modules. | |
""" | |
# Dictionary model names to config. | |
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES | |
model_name_to_config = { | |
name: config_maping_names[code] | |
for code, name in transformers_module.MODEL_NAMES_MAPPING.items() | |
if code in config_maping_names | |
} | |
model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()} | |
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. | |
pt_models = collections.defaultdict(bool) | |
tf_models = collections.defaultdict(bool) | |
flax_models = collections.defaultdict(bool) | |
# Let's lookup through all transformers object (once). | |
for attr_name in dir(transformers_module): | |
lookup_dict = None | |
if _re_tf_models.match(attr_name) is not None: | |
lookup_dict = tf_models | |
attr_name = _re_tf_models.match(attr_name).groups()[0] | |
elif _re_flax_models.match(attr_name) is not None: | |
lookup_dict = flax_models | |
attr_name = _re_flax_models.match(attr_name).groups()[0] | |
elif _re_pt_models.match(attr_name) is not None: | |
lookup_dict = pt_models | |
attr_name = _re_pt_models.match(attr_name).groups()[0] | |
if lookup_dict is not None: | |
while len(attr_name) > 0: | |
if attr_name in model_name_to_prefix.values(): | |
lookup_dict[attr_name] = True | |
break | |
# Try again after removing the last word in the name | |
attr_name = "".join(camel_case_split(attr_name)[:-1]) | |
# Let's build that table! | |
model_names = list(model_name_to_config.keys()) + list(MODEL_NAMES_WITH_SAME_CONFIG.keys()) | |
# model name to doc link mapping | |
model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING | |
model_name_to_link_mapping = {value: f"[{value}](model_doc/{key})" for key, value in model_names_mapping.items()} | |
# update mapping with special model names | |
model_name_to_link_mapping = { | |
k: SPECIAL_MODEL_NAME_LINK_MAPPING[k] if k in SPECIAL_MODEL_NAME_LINK_MAPPING else v | |
for k, v in model_name_to_link_mapping.items() | |
} | |
# MaskFormerSwin and TimmBackbone are backbones and so not meant to be loaded and used on their own. Instead, they define architectures which can be loaded using the AutoBackbone API. | |
names_to_exclude = ["MaskFormerSwin", "TimmBackbone", "Speech2Text2"] | |
model_names = [name for name in model_names if name not in names_to_exclude] | |
model_names.sort(key=str.lower) | |
columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"] | |
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). | |
widths = [len(c) + 2 for c in columns] | |
widths[0] = max([len(doc_link) for doc_link in model_name_to_link_mapping.values()]) + 2 | |
# Build the table per se | |
table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n" | |
# Use ":-----:" format to center-aligned table cell texts | |
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n" | |
check = {True: "✅", False: "❌"} | |
for name in model_names: | |
if name in MODEL_NAMES_TO_IGNORE: | |
continue | |
if name in MODEL_NAMES_WITH_SAME_CONFIG.keys(): | |
prefix = model_name_to_prefix[MODEL_NAMES_WITH_SAME_CONFIG[name]] | |
else: | |
prefix = model_name_to_prefix[name] | |
line = [ | |
model_name_to_link_mapping[name], | |
check[pt_models[prefix]], | |
check[tf_models[prefix]], | |
check[flax_models[prefix]], | |
] | |
table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n" | |
return table | |
def check_model_table(overwrite=False): | |
""" | |
Check the model table in the index.md is consistent with the state of the lib and potentially fix it. | |
Args: | |
overwrite (`bool`, *optional*, defaults to `False`): | |
Whether or not to overwrite the table when it's not up to date. | |
""" | |
current_table, start_index, end_index, lines = _find_text_in_file( | |
filename=os.path.join(PATH_TO_DOCS, "index.md"), | |
start_prompt="<!--This table is updated automatically from the auto modules", | |
end_prompt="<!-- End table-->", | |
) | |
new_table = get_model_table_from_auto_modules() | |
if current_table != new_table: | |
if overwrite: | |
with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f: | |
f.writelines(lines[:start_index] + [new_table] + lines[end_index:]) | |
else: | |
raise ValueError( | |
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") | |
args = parser.parse_args() | |
check_model_table(args.fix_and_overwrite) | |