Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import pytest | |
from transformers import DetrConfig, MaskFormerConfig, ResNetBackbone, ResNetConfig, TimmBackbone | |
from transformers.testing_utils import require_torch, slow | |
from transformers.utils.backbone_utils import ( | |
BackboneMixin, | |
get_aligned_output_features_output_indices, | |
load_backbone, | |
verify_out_features_out_indices, | |
) | |
from transformers.utils.import_utils import is_torch_available | |
if is_torch_available(): | |
import torch | |
from transformers import BertPreTrainedModel | |
class BackboneUtilsTester(unittest.TestCase): | |
def test_get_aligned_output_features_output_indices(self): | |
stage_names = ["a", "b", "c"] | |
# Defaults to last layer if both are None | |
out_features, out_indices = get_aligned_output_features_output_indices(None, None, stage_names) | |
self.assertEqual(out_features, ["c"]) | |
self.assertEqual(out_indices, [2]) | |
# Out indices set to match out features | |
out_features, out_indices = get_aligned_output_features_output_indices(["a", "c"], None, stage_names) | |
self.assertEqual(out_features, ["a", "c"]) | |
self.assertEqual(out_indices, [0, 2]) | |
# Out features set to match out indices | |
out_features, out_indices = get_aligned_output_features_output_indices(None, [0, 2], stage_names) | |
self.assertEqual(out_features, ["a", "c"]) | |
self.assertEqual(out_indices, [0, 2]) | |
# Out features selected from negative indices | |
out_features, out_indices = get_aligned_output_features_output_indices(None, [-3, -1], stage_names) | |
self.assertEqual(out_features, ["a", "c"]) | |
self.assertEqual(out_indices, [-3, -1]) | |
def test_verify_out_features_out_indices(self): | |
# Stage names must be set | |
with pytest.raises(ValueError, match="Stage_names must be set for transformers backbones"): | |
verify_out_features_out_indices(["a", "b"], (0, 1), None) | |
# Out features must be a list | |
with pytest.raises(ValueError, match="out_features must be a list got <class 'tuple'>"): | |
verify_out_features_out_indices(("a", "b"), (0, 1), ["a", "b"]) | |
# Out features must be a subset of stage names | |
with pytest.raises( | |
ValueError, match=r"out_features must be a subset of stage_names: \['a'\] got \['a', 'b'\]" | |
): | |
verify_out_features_out_indices(["a", "b"], (0, 1), ["a"]) | |
# Out features must contain no duplicates | |
with pytest.raises(ValueError, match=r"out_features must not contain any duplicates, got \['a', 'a'\]"): | |
verify_out_features_out_indices(["a", "a"], None, ["a"]) | |
# Out indices must be a list or tuple | |
with pytest.raises(ValueError, match="out_indices must be a list or tuple, got <class 'int'>"): | |
verify_out_features_out_indices(None, 0, ["a", "b"]) | |
# Out indices must be a subset of stage names | |
with pytest.raises( | |
ValueError, match=r"out_indices must be valid indices for stage_names \['a'\], got \(0, 1\)" | |
): | |
verify_out_features_out_indices(None, (0, 1), ["a"]) | |
# Out indices must contain no duplicates | |
with pytest.raises(ValueError, match=r"out_indices must not contain any duplicates, got \(0, 0\)"): | |
verify_out_features_out_indices(None, (0, 0), ["a"]) | |
# Out features and out indices must be the same length | |
with pytest.raises( | |
ValueError, match="out_features and out_indices should have the same length if both are set" | |
): | |
verify_out_features_out_indices(["a", "b"], (0,), ["a", "b", "c"]) | |
# Out features should match out indices | |
with pytest.raises( | |
ValueError, match="out_features and out_indices should correspond to the same stages if both are set" | |
): | |
verify_out_features_out_indices(["a", "b"], (0, 2), ["a", "b", "c"]) | |
# Out features and out indices should be in order | |
with pytest.raises( | |
ValueError, | |
match=r"out_features must be in the same order as stage_names, expected \['a', 'b'\] got \['b', 'a'\]", | |
): | |
verify_out_features_out_indices(["b", "a"], (0, 1), ["a", "b"]) | |
with pytest.raises( | |
ValueError, match=r"out_indices must be in the same order as stage_names, expected \(-2, 1\) got \(1, -2\)" | |
): | |
verify_out_features_out_indices(["a", "b"], (1, -2), ["a", "b"]) | |
# Check passes with valid inputs | |
verify_out_features_out_indices(["a", "b", "d"], (0, 1, -1), ["a", "b", "c", "d"]) | |
def test_backbone_mixin(self): | |
backbone = BackboneMixin() | |
backbone.stage_names = ["a", "b", "c"] | |
backbone._out_features = ["a", "c"] | |
backbone._out_indices = [0, 2] | |
# Check that the output features and indices are set correctly | |
self.assertEqual(backbone.out_features, ["a", "c"]) | |
self.assertEqual(backbone.out_indices, [0, 2]) | |
# Check out features and indices are updated correctly | |
backbone.out_features = ["a", "b"] | |
self.assertEqual(backbone.out_features, ["a", "b"]) | |
self.assertEqual(backbone.out_indices, [0, 1]) | |
backbone.out_indices = [-3, -1] | |
self.assertEqual(backbone.out_features, ["a", "c"]) | |
self.assertEqual(backbone.out_indices, [-3, -1]) | |
def test_load_backbone_from_config(self): | |
""" | |
Test that load_backbone correctly loads a backbone from a backbone config. | |
""" | |
config = MaskFormerConfig(backbone_config=ResNetConfig(out_indices=(0, 2))) | |
backbone = load_backbone(config) | |
self.assertEqual(backbone.out_features, ["stem", "stage2"]) | |
self.assertEqual(backbone.out_indices, (0, 2)) | |
self.assertIsInstance(backbone, ResNetBackbone) | |
def test_load_backbone_from_checkpoint(self): | |
""" | |
Test that load_backbone correctly loads a backbone from a checkpoint. | |
""" | |
config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_config=None) | |
backbone = load_backbone(config) | |
self.assertEqual(backbone.out_indices, [4]) | |
self.assertEqual(backbone.out_features, ["stage4"]) | |
self.assertIsInstance(backbone, ResNetBackbone) | |
config = MaskFormerConfig( | |
backbone="resnet18", | |
use_timm_backbone=True, | |
) | |
backbone = load_backbone(config) | |
# We can't know ahead of time the exact output features and indices, or the layer names before | |
# creating the timm model, so it defaults to the last layer (-1,) and has a different layer name | |
self.assertEqual(backbone.out_indices, (-1,)) | |
self.assertEqual(backbone.out_features, ["layer4"]) | |
self.assertIsInstance(backbone, TimmBackbone) | |
def test_load_backbone_backbone_kwargs(self): | |
""" | |
Test that load_backbone correctly configures the loaded backbone with the provided kwargs. | |
""" | |
config = MaskFormerConfig(backbone="resnet18", use_timm_backbone=True, backbone_kwargs={"out_indices": (0, 1)}) | |
backbone = load_backbone(config) | |
self.assertEqual(backbone.out_indices, (0, 1)) | |
self.assertIsInstance(backbone, TimmBackbone) | |
config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_kwargs={"out_indices": (0, 2)}) | |
backbone = load_backbone(config) | |
self.assertEqual(backbone.out_indices, (0, 2)) | |
self.assertIsInstance(backbone, ResNetBackbone) | |
# Check can't be passed with a backone config | |
with pytest.raises(ValueError): | |
config = MaskFormerConfig( | |
backbone="microsoft/resnet-18", | |
backbone_config=ResNetConfig(out_indices=(0, 2)), | |
backbone_kwargs={"out_indices": (0, 1)}, | |
) | |
def test_load_backbone_in_new_model(self): | |
""" | |
Tests that new model can be created, with its weights instantiated and pretrained backbone weights loaded. | |
""" | |
# Inherit from PreTrainedModel to ensure that the weights are initialized | |
class NewModel(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.backbone = load_backbone(config) | |
self.layer_0 = torch.nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_1 = torch.nn.Linear(config.hidden_size, config.hidden_size) | |
def get_equal_not_equal_weights(model_0, model_1): | |
equal_weights = [] | |
not_equal_weights = [] | |
for (k0, v0), (k1, v1) in zip(model_0.named_parameters(), model_1.named_parameters()): | |
self.assertEqual(k0, k1) | |
weights_are_equal = torch.allclose(v0, v1) | |
if weights_are_equal: | |
equal_weights.append(k0) | |
else: | |
not_equal_weights.append(k0) | |
return equal_weights, not_equal_weights | |
config = MaskFormerConfig(use_pretrained_backbone=False, backbone="microsoft/resnet-18") | |
model_0 = NewModel(config) | |
model_1 = NewModel(config) | |
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | |
# Norm layers are always initialized with the same weights | |
equal_weights = [w for w in equal_weights if "normalization" not in w] | |
self.assertEqual(len(equal_weights), 0) | |
self.assertEqual(len(not_equal_weights), 24) | |
# Now we create a new model with backbone weights that are pretrained | |
config.use_pretrained_backbone = True | |
model_0 = NewModel(config) | |
model_1 = NewModel(config) | |
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | |
# Norm layers are always initialized with the same weights | |
equal_weights = [w for w in equal_weights if "normalization" not in w] | |
self.assertEqual(len(equal_weights), 20) | |
# Linear layers are still initialized randomly | |
self.assertEqual(len(not_equal_weights), 4) | |
# Check loading in timm backbone | |
config = DetrConfig(use_pretrained_backbone=False, backbone="resnet18", use_timm_backbone=True) | |
model_0 = NewModel(config) | |
model_1 = NewModel(config) | |
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | |
# Norm layers are always initialized with the same weights | |
equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] | |
self.assertEqual(len(equal_weights), 0) | |
self.assertEqual(len(not_equal_weights), 24) | |
# Now we create a new model with backbone weights that are pretrained | |
config.use_pretrained_backbone = True | |
model_0 = NewModel(config) | |
model_1 = NewModel(config) | |
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | |
# Norm layers are always initialized with the same weights | |
equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] | |
self.assertEqual(len(equal_weights), 20) | |
# Linear layers are still initialized randomly | |
self.assertEqual(len(not_equal_weights), 4) | |